A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations (2017)
- Authors:
- Autor USP: EBERT, MARCELO REMPEL - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.na.2016.10.010
- Subjects: EQUAÇÕES DE EVOLUÇÃO; MATEMÁTICA
- Keywords: Semi-linear evolution equations; Critical exponent; Global small data solutions; Structural damping; Test function method
- Language: Inglês
- Imprenta:
- Source:
- Título: Nonlinear Analysis
- ISSN: 0362-546X
- Volume/Número/Paginação/Ano: v. 149, p. 1-40, 2017
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
D'ABBICCO, M. e EBERT, Marcelo Rempel. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, v. 149, p. 1-40, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.na.2016.10.010. Acesso em: 21 jan. 2026. -
APA
D'Abbicco, M., & Ebert, M. R. (2017). A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, 149, 1-40. doi:10.1016/j.na.2016.10.010 -
NLM
D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.na.2016.10.010 -
Vancouver
D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.na.2016.10.010 - Diffusion phenomena for the wave equation with structural damping in the Lp – Lq framework
- Estimativas de energia para equações de onda com potencial variável no tempo
- Global (in time) existence of solutions for semilinear damped wave equations in Friedmann-Lemaître-Robertson-Walker spacetime
- L1 estimates for radial solutions to the free wave equation and semilinear problems
- On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions
- On the loss of regularity for a class of weakly hyperbolic operators
- Klein-Gordon type wave models with non-effective time-dependent potential
- Oscillatory integrals in fourier analysis and applications to wave type models
- Energy estimates at infinity for hiperbolic-like dissipation equations
- On the loss of regulatory for a class of weakly hyperbolic operators
Informações sobre o DOI: 10.1016/j.na.2016.10.010 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas