Filtros : "Countable compactness" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, v. 333, n. artigo 108538, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108538. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K., Hart, K. P., Rodrigues, V. O., & Tomita, A. H. (2023). Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, 333( artigo 108538), 1-23. doi:10.1016/j.topol.2023.108538
    • NLM

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
    • Vancouver

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
  • Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRAGA, Juliane Trianon. Pseudocompactness and ultrafilters. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/. Acesso em: 03 jan. 2026.
    • APA

      Fraga, J. T. (2023). Pseudocompactness and ultrafilters (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
    • NLM

      Fraga JT. Pseudocompactness and ultrafilters [Internet]. 2023 ;[citado 2026 jan. 03 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
    • Vancouver

      Fraga JT. Pseudocompactness and ultrafilters [Internet]. 2023 ;[citado 2026 jan. 03 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. On powers of countably pracompact groups. Topology and its Applications, v. 327, n. artigo 108434, p. 1-31, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108434. Acesso em: 03 jan. 2026.
    • APA

      Tomita, A. H., & Fraga, J. T. (2023). On powers of countably pracompact groups. Topology and its Applications, 327( artigo 108434), 1-31. doi:10.1016/j.topol.2023.108434
    • NLM

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
    • Vancouver

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. Some pseudocompact-like properties in certain topological groups. Topology and its Applications, v. 314, n. artigo 108111, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2022.108111. Acesso em: 03 jan. 2026.
    • APA

      Tomita, A. H., & Fraga, J. T. (2022). Some pseudocompact-like properties in certain topological groups. Topology and its Applications, 314( artigo 108111), 1-18. doi:10.1016/j.topol.2022.108111
    • NLM

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
    • Vancouver

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
  • Unidade: IME

    Subjects: ÁLGEBRAS TOPOLÓGICAS, COMBINATÓRIA, GRUPOS COMPACTOS, TEORIA DOS CONJUNTOS, TOPOLOGIA CONJUNTÍSTICA, TOPOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff. Countably compact group topologies on torsion-free Abelian groups. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K. (2022). Countably compact group topologies on torsion-free Abelian groups (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
    • NLM

      Bellini MK. Countably compact group topologies on torsion-free Abelian groups [Internet]. 2022 ;[citado 2026 jan. 03 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
    • Vancouver

      Bellini MK. Countably compact group topologies on torsion-free Abelian groups [Internet]. 2022 ;[citado 2026 jan. 03 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, v. 297, n. art. 107703, p. 1-23, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107703. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, v. 296, n. art. 107684, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107684. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, v. 294, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107653. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, v. 259, p. 347-364, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.02.040. Acesso em: 03 jan. 2026.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, v. 267, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106894. Acesso em: 03 jan. 2026.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.106894

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026