Filtros : "Canceling operators" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: FFCLRP

    Subjects: VETORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIATTO, Victor Sandrin e PICON, Tiago Henrique. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data. Journal of Differential Equations, v. 430, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.02.050. Acesso em: 24 jan. 2026.
    • APA

      Biliatto, V. S., & Picon, T. H. (2025). Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data. Journal of Differential Equations, 430, 1-25. doi:10.1016/j.jde.2025.02.050
    • NLM

      Biliatto VS, Picon TH. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data [Internet]. Journal of Differential Equations. 2025 ; 430 1-25.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2025.02.050
    • Vancouver

      Biliatto VS, Picon TH. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data [Internet]. Journal of Differential Equations. 2025 ; 430 1-25.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jde.2025.02.050
  • Source: Forum Mathematicum. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ESPAÇOS TOPOLÓGICOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIATTO, Victor e MOONENS, Laurent e PICON, Tiago Henrique. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum, 2024Tradução . . Disponível em: https://doi.org/10.1515/forum-2023-0438. Acesso em: 24 jan. 2026.
    • APA

      Biliatto, V., Moonens, L., & Picon, T. H. (2024). Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions. Forum Mathematicum. doi:10.1515/forum-2023-0438
    • NLM

      Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2026 jan. 24 ] Available from: https://doi.org/10.1515/forum-2023-0438
    • Vancouver

      Biliatto V, Moonens L, Picon TH. Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions [Internet]. Forum Mathematicum. 2024 ;[citado 2026 jan. 24 ] Available from: https://doi.org/10.1515/forum-2023-0438
  • Source: The Journal of Geometric Analysis. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES LINEARES, OPERADORES ELÍTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIATTO, Victor e PICON, Tiago Henrique. A note on lebesgue solvability of elliptic homogeneous linear equations with measure data. The Journal of Geometric Analysis, v. 34, n. 22, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-023-01457-w. Acesso em: 24 jan. 2026.
    • APA

      Biliatto, V., & Picon, T. H. (2023). A note on lebesgue solvability of elliptic homogeneous linear equations with measure data. The Journal of Geometric Analysis, 34( 22). doi:10.1007/s12220-023-01457-w
    • NLM

      Biliatto V, Picon TH. A note on lebesgue solvability of elliptic homogeneous linear equations with measure data [Internet]. The Journal of Geometric Analysis. 2023 ; 34( 22):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s12220-023-01457-w
    • Vancouver

      Biliatto V, Picon TH. A note on lebesgue solvability of elliptic homogeneous linear equations with measure data [Internet]. The Journal of Geometric Analysis. 2023 ; 34( 22):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s12220-023-01457-w
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES ELÍTICOS, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, J. e PICON, Tiago Henrique. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, v. 494, n. 1, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124598. Acesso em: 24 jan. 2026.
    • APA

      Hounie, J., & Picon, T. H. (2021). Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, 494( 1). doi:10.1016/j.jmaa.2020.124598
    • NLM

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
    • Vancouver

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026