Filtros : "Box-counting dimension" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, FRACTAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOURA, Rafael de Oliveira. Dimension of attractors associated to autonomous and non-autonomous dynamical systems. 2025. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/. Acesso em: 22 jan. 2026.
    • APA

      Moura, R. de O. (2025). Dimension of attractors associated to autonomous and non-autonomous dynamical systems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
    • NLM

      Moura R de O. Dimension of attractors associated to autonomous and non-autonomous dynamical systems [Internet]. 2025 ;[citado 2026 jan. 22 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
    • Vancouver

      Moura R de O. Dimension of attractors associated to autonomous and non-autonomous dynamical systems [Internet]. 2025 ;[citado 2026 jan. 22 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
  • Unidade: IME

    Subjects: ATRATORES, FRACTAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gabriela Cristina da. Uma abordagem topológica e dinâmica à geometria fractal. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/. Acesso em: 22 jan. 2026.
    • APA

      Silva, G. C. da. (2023). Uma abordagem topológica e dinâmica à geometria fractal (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • NLM

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2026 jan. 22 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
    • Vancouver

      Silva GC da. Uma abordagem topológica e dinâmica à geometria fractal [Internet]. 2023 ;[citado 2026 jan. 22 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 22 jan. 2026.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026