Filtros : "Morgun, Andrey" "IME-MAE" Removidos: "Física Aplicada à Medicina e Biologia" "Eduardo, Carlos de Paula" "Medicina" Limpar

Filtros



Refine with date range


  • Source: IEEE/ACM Transactions on Computational Biology and Bioinformatics. Unidade: IME

    Subjects: BIOINFORMÁTICA, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUNIKHINA, Evgenia et al. The C-SHIFT algorithm for normalizing covariances. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 20, n. 1, p. 720-730, 2023Tradução . . Disponível em: https://doi.org/10.1109/TCBB.2022.3151840. Acesso em: 11 set. 2024.
    • APA

      Chunikhina, E., Logan, P., Kovchegov, Y., Iambartsev, A., Mondal, D., & Morgun, A. (2023). The C-SHIFT algorithm for normalizing covariances. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20( 1), 720-730. doi:10.1109/TCBB.2022.3151840
    • NLM

      Chunikhina E, Logan P, Kovchegov Y, Iambartsev A, Mondal D, Morgun A. The C-SHIFT algorithm for normalizing covariances [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023 ; 20( 1): 720-730.[citado 2024 set. 11 ] Available from: https://doi.org/10.1109/TCBB.2022.3151840
    • Vancouver

      Chunikhina E, Logan P, Kovchegov Y, Iambartsev A, Mondal D, Morgun A. The C-SHIFT algorithm for normalizing covariances [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2023 ; 20( 1): 720-730.[citado 2024 set. 11 ] Available from: https://doi.org/10.1109/TCBB.2022.3151840
  • Source: Biology Direct. Unidade: IME

    Subjects: GENES, VARIAÇÃO GENÉTICA, GENÉTICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IAMBARTSEV, Anatoli et al. Unexpected links reflect the noise in networks. Biology Direct, v. 11, n. 1, p. 1-12, 2016Tradução . . Disponível em: https://doi.org/10.1186/s13062-016-0155-0. Acesso em: 11 set. 2024.
    • APA

      Iambartsev, A., Perlin, M. A., Kovchegov, Y., Shulzhenko, N., Mine, K. L., Dong, X., & Morgun, A. (2016). Unexpected links reflect the noise in networks. Biology Direct, 11( 1), 1-12. doi:10.1186/s13062-016-0155-0
    • NLM

      Iambartsev A, Perlin MA, Kovchegov Y, Shulzhenko N, Mine KL, Dong X, Morgun A. Unexpected links reflect the noise in networks [Internet]. Biology Direct. 2016 ; 11( 1): 1-12.[citado 2024 set. 11 ] Available from: https://doi.org/10.1186/s13062-016-0155-0
    • Vancouver

      Iambartsev A, Perlin MA, Kovchegov Y, Shulzhenko N, Mine KL, Dong X, Morgun A. Unexpected links reflect the noise in networks [Internet]. Biology Direct. 2016 ; 11( 1): 1-12.[citado 2024 set. 11 ] Available from: https://doi.org/10.1186/s13062-016-0155-0
  • Source: F1000Research. Unidade: IME

    Assunto: EXPRESSÃO GÊNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THOMAS, Lina Dornelas et al. Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research, v. 5, p. 2740, 2016Tradução . . Disponível em: https://doi.org/10.12688%2Ff1000research.9708.1. Acesso em: 11 set. 2024.
    • APA

      Thomas, L. D., Vyshenska, D., Shulzhenko, N., Iambartsev, A., & Morgun, A. (2016). Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research, 5, 2740. doi:10.12688%2Ff1000research.9708.1
    • NLM

      Thomas LD, Vyshenska D, Shulzhenko N, Iambartsev A, Morgun A. Differentially correlated genes in co-expression networks control phenotype transitions [Internet]. F1000Research. 2016 ; 5 2740.[citado 2024 set. 11 ] Available from: https://doi.org/10.12688%2Ff1000research.9708.1
    • Vancouver

      Thomas LD, Vyshenska D, Shulzhenko N, Iambartsev A, Morgun A. Differentially correlated genes in co-expression networks control phenotype transitions [Internet]. F1000Research. 2016 ; 5 2740.[citado 2024 set. 11 ] Available from: https://doi.org/10.12688%2Ff1000research.9708.1
  • Source: Bioinformatics and Biology Insights. Unidade: IME

    Subjects: ESTATÍSTICA APLICADA, BIOESTATÍSTICA, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DONG, Xiaoxi et al. Reverse enGENEering of regulatory networks from big data: a roadmap for biologists. Bioinformatics and Biology Insights, v. 9, p. 61-74, 2015Tradução . . Disponível em: https://doi.org/10.4137/BBI.S12467. Acesso em: 11 set. 2024.
    • APA

      Dong, X., Iambartsev, A., Ramsey, S. A., Thomas, L. D., Shulzhenko, N., & Morgun, A. (2015). Reverse enGENEering of regulatory networks from big data: a roadmap for biologists. Bioinformatics and Biology Insights, 9, 61-74. doi:10.4137/BBI.S12467
    • NLM

      Dong X, Iambartsev A, Ramsey SA, Thomas LD, Shulzhenko N, Morgun A. Reverse enGENEering of regulatory networks from big data: a roadmap for biologists [Internet]. Bioinformatics and Biology Insights. 2015 ; 9 61-74.[citado 2024 set. 11 ] Available from: https://doi.org/10.4137/BBI.S12467
    • Vancouver

      Dong X, Iambartsev A, Ramsey SA, Thomas LD, Shulzhenko N, Morgun A. Reverse enGENEering of regulatory networks from big data: a roadmap for biologists [Internet]. Bioinformatics and Biology Insights. 2015 ; 9 61-74.[citado 2024 set. 11 ] Available from: https://doi.org/10.4137/BBI.S12467
  • Source: Nature Communications. Unidade: IME

    Subjects: GENES, CARCINOMA, REGIÃO CERVICAL, BIOESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MINE, Karina L et al. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nature Communications, v. 4, p. 1-11, 2013Tradução . . Disponível em: https://doi.org/10.1038/ncomms2693. Acesso em: 11 set. 2024.
    • APA

      Mine, K. L., Shulzhenko, N., Iambartsev, A., Rochman, M., Sanson, G. F. O., Lando, M., et al. (2013). Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nature Communications, 4, 1-11. doi:10.1038/ncomms2693
    • NLM

      Mine KL, Shulzhenko N, Iambartsev A, Rochman M, Sanson GFO, Lando M, Varma S, Skinner J, Volfovsky N, Deng T, Brenna SMF, Carvalho CRN de, Ribalta JCL, Bustin M, Matzinger P, Silva IDCG, Lyng H, Gerbase-Delima M, Morgun A. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer [Internet]. Nature Communications. 2013 ; 4 1-11.[citado 2024 set. 11 ] Available from: https://doi.org/10.1038/ncomms2693
    • Vancouver

      Mine KL, Shulzhenko N, Iambartsev A, Rochman M, Sanson GFO, Lando M, Varma S, Skinner J, Volfovsky N, Deng T, Brenna SMF, Carvalho CRN de, Ribalta JCL, Bustin M, Matzinger P, Silva IDCG, Lyng H, Gerbase-Delima M, Morgun A. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer [Internet]. Nature Communications. 2013 ; 4 1-11.[citado 2024 set. 11 ] Available from: https://doi.org/10.1038/ncomms2693
  • Source: BMC Bioinformatics. Unidade: IME

    Subjects: GENES, BIOESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SKINNER, Jeff et al. Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinformatics, v. 12, n. 1, p. 286, 2011Tradução . . Disponível em: https://doi.org/10.1186/1471-2105-12-286. Acesso em: 11 set. 2024.
    • APA

      Skinner, J., Kotliarov, Y., Varma, S., Mine, K. L., Iambartsev, A., Simon, R., et al. (2011). Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinformatics, 12( 1), 286. doi:10.1186/1471-2105-12-286
    • NLM

      Skinner J, Kotliarov Y, Varma S, Mine KL, Iambartsev A, Simon R, Huyen Y, Morgun A. Construct and compare gene coexpression networks with DAPfinder and DAPview [Internet]. BMC Bioinformatics. 2011 ; 12( 1): 286.[citado 2024 set. 11 ] Available from: https://doi.org/10.1186/1471-2105-12-286
    • Vancouver

      Skinner J, Kotliarov Y, Varma S, Mine KL, Iambartsev A, Simon R, Huyen Y, Morgun A. Construct and compare gene coexpression networks with DAPfinder and DAPview [Internet]. BMC Bioinformatics. 2011 ; 12( 1): 286.[citado 2024 set. 11 ] Available from: https://doi.org/10.1186/1471-2105-12-286
  • Source: Human Molecular Genetics. Unidade: IME

    Subjects: PAPILLOMAVIRUS, NEOPLASIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMAN, Valeska B. et al. New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer. Human Molecular Genetics, v. 17, n. 12, p. 1838-1844, 2008Tradução . . Disponível em: https://doi.org/10.1093/hmg/ddn077. Acesso em: 11 set. 2024.
    • APA

      Guzman, V. B., Yambartsev, A., Gonçalves-Primo, A., Silva, I. D. C. G. da, Carvalho, C. R. N., Ribalta, J. C. L., et al. (2008). New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer. Human Molecular Genetics, 17( 12), 1838-1844. doi:10.1093/hmg/ddn077
    • NLM

      Guzman VB, Yambartsev A, Gonçalves-Primo A, Silva IDCG da, Carvalho CRN, Ribalta JCL, Goulart LR, Shulzhenko N, Gerbase-Delima M, Morgun A. New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer [Internet]. Human Molecular Genetics. 2008 ; 17( 12): 1838-1844.[citado 2024 set. 11 ] Available from: https://doi.org/10.1093/hmg/ddn077
    • Vancouver

      Guzman VB, Yambartsev A, Gonçalves-Primo A, Silva IDCG da, Carvalho CRN, Ribalta JCL, Goulart LR, Shulzhenko N, Gerbase-Delima M, Morgun A. New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer [Internet]. Human Molecular Genetics. 2008 ; 17( 12): 1838-1844.[citado 2024 set. 11 ] Available from: https://doi.org/10.1093/hmg/ddn077
  • Source: Biochemical and Biophysical Research Communications. Unidade: IME

    Assunto: GENES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHULZHENKO, Natalia et al. Selection of control genes for quantitative RT-PCR based on microarray data. Biochemical and Biophysical Research Communications, v. 337, n. 1, p. 306-312, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.bbrc.2005.09.048. Acesso em: 11 set. 2024.
    • APA

      Shulzhenko, N., Iambartsev, A., Gonçalves-Primo, A., Gerbase-Delima, M., & Morgun, A. (2005). Selection of control genes for quantitative RT-PCR based on microarray data. Biochemical and Biophysical Research Communications, 337( 1), 306-312. doi:10.1016/j.bbrc.2005.09.048
    • NLM

      Shulzhenko N, Iambartsev A, Gonçalves-Primo A, Gerbase-Delima M, Morgun A. Selection of control genes for quantitative RT-PCR based on microarray data [Internet]. Biochemical and Biophysical Research Communications. 2005 ; 337( 1): 306-312.[citado 2024 set. 11 ] Available from: https://doi.org/10.1016/j.bbrc.2005.09.048
    • Vancouver

      Shulzhenko N, Iambartsev A, Gonçalves-Primo A, Gerbase-Delima M, Morgun A. Selection of control genes for quantitative RT-PCR based on microarray data [Internet]. Biochemical and Biophysical Research Communications. 2005 ; 337( 1): 306-312.[citado 2024 set. 11 ] Available from: https://doi.org/10.1016/j.bbrc.2005.09.048

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024