Filtros : "Indexado Current Contents" "IQSC-SQF" Removido: "CATÁLISE" Limpar

Filtros



Refine with date range


  • Source: ChemistrySelect. Unidade: IQSC

    Assunto: BIOMASSA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      METZKER, Gustavo e DIAS, Rafael Mafra de Paula e BURTOLOSO, Antonio Carlos Bender. Iron-catalyzed reductive amination from levulinic and formic acid aqueous solutions: An approach for the selective production of pyrrolidones in biorefinery facilities. ChemistrySelect, v. 3, n. 2, p. 368-372, 2018Tradução . . Disponível em: https://doi.org/10.1002/slct.201702580. Acesso em: 05 jun. 2024.
    • APA

      Metzker, G., Dias, R. M. de P., & Burtoloso, A. C. B. (2018). Iron-catalyzed reductive amination from levulinic and formic acid aqueous solutions: An approach for the selective production of pyrrolidones in biorefinery facilities. ChemistrySelect, 3( 2), 368-372. doi:10.1002/slct.201702580
    • NLM

      Metzker G, Dias RM de P, Burtoloso ACB. Iron-catalyzed reductive amination from levulinic and formic acid aqueous solutions: An approach for the selective production of pyrrolidones in biorefinery facilities [Internet]. ChemistrySelect. 2018 ; 3( 2): 368-372.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1002/slct.201702580
    • Vancouver

      Metzker G, Dias RM de P, Burtoloso ACB. Iron-catalyzed reductive amination from levulinic and formic acid aqueous solutions: An approach for the selective production of pyrrolidones in biorefinery facilities [Internet]. ChemistrySelect. 2018 ; 3( 2): 368-372.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1002/slct.201702580
  • Source: Current Organic Chemistry. Unidade: IQSC

    Assunto: FUNGOS MITOSPORICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANIN, Lucas Lima et al. Knoevenagel condensation reactions of cyano malononitrile- derivaties under microwave radiation. Current Organic Chemistry, v. 22, n. 6, p. 519-532, 2018Tradução . . Disponível em: https://doi.org/10.2174/1385272822666180123145819. Acesso em: 05 jun. 2024.
    • APA

      Zanin, L. L., Jimenez, D. E. Q., Fonseca, L. P., & Porto, A. L. M. (2018). Knoevenagel condensation reactions of cyano malononitrile- derivaties under microwave radiation. Current Organic Chemistry, 22( 6), 519-532. doi:10.2174/1385272822666180123145819
    • NLM

      Zanin LL, Jimenez DEQ, Fonseca LP, Porto ALM. Knoevenagel condensation reactions of cyano malononitrile- derivaties under microwave radiation [Internet]. Current Organic Chemistry. 2018 ; 22( 6): 519-532.[citado 2024 jun. 05 ] Available from: https://doi.org/10.2174/1385272822666180123145819
    • Vancouver

      Zanin LL, Jimenez DEQ, Fonseca LP, Porto ALM. Knoevenagel condensation reactions of cyano malononitrile- derivaties under microwave radiation [Internet]. Current Organic Chemistry. 2018 ; 22( 6): 519-532.[citado 2024 jun. 05 ] Available from: https://doi.org/10.2174/1385272822666180123145819
  • Source: Bioorganic Chemistry. Unidade: IQSC

    Subjects: MOLÉCULA, QUÍMICA MÉDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIANNI, Lorenzo et al. Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors. Bioorganic Chemistry, p. 285-292, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.bioorg.2018.04.006. Acesso em: 05 jun. 2024.
    • APA

      Cianni, L., Satori, G. R., Rosini, F., De Vitta, D., Pires, G. L. de P., Lopes, B. R., et al. (2018). Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors. Bioorganic Chemistry, 285-292. doi:10.1016/j.bioorg.2018.04.006
    • NLM

      Cianni L, Satori GR, Rosini F, De Vitta D, Pires GL de P, Lopes BR, Leitão A, Burtoloso ACB, Montanari CA. Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors [Internet]. Bioorganic Chemistry. 2018 ; 285-292.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.bioorg.2018.04.006
    • Vancouver

      Cianni L, Satori GR, Rosini F, De Vitta D, Pires GL de P, Lopes BR, Leitão A, Burtoloso ACB, Montanari CA. Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors [Internet]. Bioorganic Chemistry. 2018 ; 285-292.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.bioorg.2018.04.006
  • Source: International Journal of Hydrogen Energy. Unidade: IQSC

    Subjects: NANOPARTÍCULAS, PLATINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTT NETO, José Luiz et al. Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. International Journal of Hydrogen Energy, v. 42, p. 20677-20688, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.ijhydene.2017.07.065. Acesso em: 05 jun. 2024.
    • APA

      Bott Neto, J. L., Beck Junior, W., Varanda, L. C., & Ticianelli, E. A. (2017). Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. International Journal of Hydrogen Energy, 42, 20677-20688. doi:10.1016/j.ijhydene.2017.07.065
    • NLM

      Bott Neto JL, Beck Junior W, Varanda LC, Ticianelli EA. Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction [Internet]. International Journal of Hydrogen Energy. 2017 ; 42 20677-20688.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.ijhydene.2017.07.065
    • Vancouver

      Bott Neto JL, Beck Junior W, Varanda LC, Ticianelli EA. Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction [Internet]. International Journal of Hydrogen Energy. 2017 ; 42 20677-20688.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.ijhydene.2017.07.065
  • Source: Applied Acoustics. Unidade: IQSC

    Assunto: QUITOSANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIROLLI, Willian Garcia e DELEZUK, Jorge Augusto de Moura e CAMPANA FILHO, Sergio Paulo. Ultrasound-assisted conversion of alpha-chitin into chitosan. Applied Acoustics, v. 103, p. 239-242, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.apacoust.2015.10.002. Acesso em: 05 jun. 2024.
    • APA

      Birolli, W. G., Delezuk, J. A. de M., & Campana Filho, S. P. (2016). Ultrasound-assisted conversion of alpha-chitin into chitosan. Applied Acoustics, 103, 239-242. doi:10.1016/j.apacoust.2015.10.002
    • NLM

      Birolli WG, Delezuk JA de M, Campana Filho SP. Ultrasound-assisted conversion of alpha-chitin into chitosan [Internet]. Applied Acoustics. 2016 ; 103 239-242.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.apacoust.2015.10.002
    • Vancouver

      Birolli WG, Delezuk JA de M, Campana Filho SP. Ultrasound-assisted conversion of alpha-chitin into chitosan [Internet]. Applied Acoustics. 2016 ; 103 239-242.[citado 2024 jun. 05 ] Available from: https://doi.org/10.1016/j.apacoust.2015.10.002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024