Filtros : "França" "GONCALVES, DACIBERG LIMA" Removidos: "Administração" "1989" "FFLCH" Limpar

Filtros



Refine with date range


  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLIGERI, Paolo e GONÇALVES, Daciberg Lima e GUASCHI, John. Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society, v. 172 , n. 2 , p. 373-399, 2022Tradução . . Disponível em: https://doi.org/10.1017/S0305004121000244. Acesso em: 09 nov. 2024.
    • APA

      Belligeri, P., Gonçalves, D. L., & Guaschi, J. (2022). Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society, 172 ( 2 ), 373-399. doi:10.1017/S0305004121000244
    • NLM

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 172 ( 2 ): 373-399.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/S0305004121000244
    • Vancouver

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 172 ( 2 ): 373-399.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1017/S0305004121000244
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, v. 293, n. Artigo 107560, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107560. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., Ocampo, O., & Pereiro, C. de M. e. (2021). Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, 293( Artigo 107560), 1-16. doi:10.1016/j.topol.2020.107560
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
  • Source: Annales de l'Instut Fourier. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS, GRUPOS NILPOTENTES, GRUPOS SIMÉTRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e OCAMPO, Oscar. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3. Annales de l'Instut Fourier, v. 70, n. 5, p. 2005-2025, 2020Tradução . . Disponível em: https://doi.org/10.5802/aif.3380. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2020). Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3. Annales de l'Instut Fourier, 70( 5), 2005-2025. doi:10.5802/aif.3380
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3 [Internet]. Annales de l'Instut Fourier. 2020 ; 70( 5): 2005-2025.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5802/aif.3380
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3 [Internet]. Annales de l'Instut Fourier. 2020 ; 70( 5): 2005-2025.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5802/aif.3380
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 nov. 09 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 nov. 09 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, v. 21, n. 2, p. 1-29, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11784-019-0693-z. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e OCAMPO, Oscar. Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, v. 524, p. 160-186, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.01.010. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2019). Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, 524, 160-186. doi:10.1016/j.jalgebra.2019.01.010
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.01.010
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.01.010
  • Source: Indagationes Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, v. 29, n. 1, p. 91-124, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.indag.2017.03.003. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2018). Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach. Indagationes Mathematicae, 29( 1), 91-124. doi:10.1016/j.indag.2017.03.003
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.indag.2017.03.003
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps, the fixed point property and the case of surfaces: a braid approach [Internet]. Indagationes Mathematicae. 2018 ; 29( 1): 91-124.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.indag.2017.03.003
  • Source: Confluentes Mathematici. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, COHOMOLOGIA DE GRUPOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e MALDONADO, Miguel. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces. Confluentes Mathematici, v. 10, n. 1, p. 41-61, 2018Tradução . . Disponível em: https://doi.org/10.5802/cml.45. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Maldonado, M. (2018). Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces. Confluentes Mathematici, 10( 1), 41-61. doi:10.5802/cml.45
    • NLM

      Gonçalves DL, Guaschi J, Maldonado M. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces [Internet]. Confluentes Mathematici. 2018 ; 10( 1): 41-61.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5802/cml.45
    • Vancouver

      Gonçalves DL, Guaschi J, Maldonado M. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces [Internet]. Confluentes Mathematici. 2018 ; 10( 1): 41-61.[citado 2024 nov. 09 ] Available from: https://doi.org/10.5802/cml.45
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2. Pacific Journal of Mathematics, v. 287, n. 1, p. 71-99, 2017Tradução . . Disponível em: https://doi.org/10.2140/pjm.2017.287.71. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2. Pacific Journal of Mathematics, 287( 1), 71-99. doi:10.2140/pjm.2017.287.71
    • NLM

      Gonçalves DL, Guaschi J. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2 [Internet]. Pacific Journal of Mathematics. 2017 ; 287( 1): 71-99.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2017.287.71
    • Vancouver

      Gonçalves DL, Guaschi J. Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2 [Internet]. Pacific Journal of Mathematics. 2017 ; 287( 1): 71-99.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/pjm.2017.287.71
  • Source: Chinese Annals of Mathematics, Series B. Unidade: IME

    Subjects: HOMOTOPIA, ESPAÇOS FIBRADOS, BRAIDS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, v. 38, n. 6, p. 1223-1246, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11401-017-1033-5. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, 38( 6), 1223-1246. doi:10.1007/s11401-017-1033-5
    • NLM

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11401-017-1033-5
    • Vancouver

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11401-017-1033-5
  • Source: Journal of Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e OCAMPO, Oscar. A quotient of the Artin braid groups related to crystallographic groups. Journal of Algebra, v. 474, p. 393-423, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2016.11.003. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2017). A quotient of the Artin braid groups related to crystallographic groups. Journal of Algebra, 474, 393-423. doi:10.1016/j.jalgebra.2016.11.003
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. A quotient of the Artin braid groups related to crystallographic groups [Internet]. Journal of Algebra. 2017 ; 474 393-423.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.11.003
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. A quotient of the Artin braid groups related to crystallographic groups [Internet]. Journal of Algebra. 2017 ; 474 393-423.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.11.003
  • Source: Boletín de la Sociedad Matemática Mexicana. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAREK GOLASIŃSKI, e GONÇALVES, Daciberg Lima e JOHN GUASCHI,. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, v. 23, n. 1, p. 457-485, 2017Tradução . . Disponível em: https://doi.org/10.1007/s40590-016-0150-6. Acesso em: 09 nov. 2024.
    • APA

      Marek Golasiński,, Gonçalves, D. L., & John Guaschi,. (2017). On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, 23( 1), 457-485. doi:10.1007/s40590-016-0150-6
    • NLM

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40590-016-0150-6
    • Vancouver

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s40590-016-0150-6
  • Source: Science China Mathematics. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach. Science China Mathematics, v. 60, n. 9, p. 1561-1574, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11425-017-9080-x. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach. Science China Mathematics, 60( 9), 1561-1574. doi:10.1007/s11425-017-9080-x
    • NLM

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach [Internet]. Science China Mathematics. 2017 ; 60( 9): 1561-1574.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11425-017-9080-x
    • Vancouver

      Gonçalves DL, Guaschi J. Fixed points of n-valued maps on surfaces and the Wecken property—a configuration space approach [Internet]. Science China Mathematics. 2017 ; 60( 9): 1561-1574.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11425-017-9080-x
  • Unidade: IME

    Subjects: BRAIDS, TEORIA DOS GRUPOS, TOPOLOGIA DE DIMENSÃO BAIXA, VARIEDADES TOPOLÓGICAS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. The classification of the virtually cyclic subgroups of the sphere braid groups. . New York: Springer. Disponível em: https://doi.org/10.1007/978-3-319-00257-6. Acesso em: 09 nov. 2024. , 2013
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). The classification of the virtually cyclic subgroups of the sphere braid groups. New York: Springer. doi:10.1007/978-3-319-00257-6
    • NLM

      Gonçalves DL, Guaschi J. The classification of the virtually cyclic subgroups of the sphere braid groups [Internet]. 2013 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-319-00257-6
    • Vancouver

      Gonçalves DL, Guaschi J. The classification of the virtually cyclic subgroups of the sphere braid groups [Internet]. 2013 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-319-00257-6
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift, v. 274, p. 667-683, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00209-012-1090-0. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift, 274, 667-683. doi:10.1007/s00209-012-1090-0
    • NLM

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00209-012-1090-0
    • Vancouver

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00209-012-1090-0
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence. Journal of Pure and Applied Algebra, v. 214, n. 5, p. 667-677, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2009.07.009. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2010). Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence. Journal of Pure and Applied Algebra, 214( 5), 667-677. doi:10.1016/j.jpaa.2009.07.009
    • NLM

      Gonçalves DL, Guaschi J. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence [Internet]. Journal of Pure and Applied Algebra. 2010 ; 214( 5): 667-677.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jpaa.2009.07.009
    • Vancouver

      Gonçalves DL, Guaschi J. Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence [Internet]. Journal of Pure and Applied Algebra. 2010 ; 214( 5): 667-677.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.jpaa.2009.07.009
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications, v. 157, n. 10-11, p. 1742-1759, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2010.02.024. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2010). The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications, 157( 10-11), 1742-1759. doi:10.1016/j.topol.2010.02.024
    • NLM

      Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2010.02.024
    • Vancouver

      Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.topol.2010.02.024
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Assunto: TEORIA GEOMÉTRICA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. The lower central and derived series of the braid groups of the sphere. Transactions of the American Mathematical Society, v. 361, n. 7, p. 3375-3399, 2009Tradução . . Disponível em: https://doi.org/10.1090/S0002-9947-09-04766-7. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2009). The lower central and derived series of the braid groups of the sphere. Transactions of the American Mathematical Society, 361( 7), 3375-3399. doi:10.1090/S0002-9947-09-04766-7
    • NLM

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the sphere [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 7): 3375-3399.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/S0002-9947-09-04766-7
    • Vancouver

      Gonçalves DL, Guaschi J. The lower central and derived series of the braid groups of the sphere [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 7): 3375-3399.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/S0002-9947-09-04766-7
  • Source: Algebraic & Geometric Topology. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebraic & Geometric Topology, v. 8, n. 2, p. 757-785, 2008Tradução . . Disponível em: https://doi.org/10.2140/agt.2008.8.757. Acesso em: 09 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2008). The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebraic & Geometric Topology, 8( 2), 757-785. doi:10.2140/agt.2008.8.757
    • NLM

      Gonçalves DL, Guaschi J. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups [Internet]. Algebraic & Geometric Topology. 2008 ; 8( 2): 757-785.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/agt.2008.8.757
    • Vancouver

      Gonçalves DL, Guaschi J. The classification and the conjugacy classes of the finite subgroups of the sphere braid groups [Internet]. Algebraic & Geometric Topology. 2008 ; 8( 2): 757-785.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2140/agt.2008.8.757
  • Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Spin-structures of bundles on surfaces and the fundamental group. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/3d2e89a9-ee3d-4a3a-a804-9a93824b3a59/1583239.pdf. Acesso em: 09 nov. 2024. , 2007
    • APA

      Gonçalves, D. L., Hayat, C., Mello, M. H. de P. L., & Zieschang, H. (2007). Spin-structures of bundles on surfaces and the fundamental group. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/3d2e89a9-ee3d-4a3a-a804-9a93824b3a59/1583239.pdf
    • NLM

      Gonçalves DL, Hayat C, Mello MH de PL, Zieschang H. Spin-structures of bundles on surfaces and the fundamental group [Internet]. 2007 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/3d2e89a9-ee3d-4a3a-a804-9a93824b3a59/1583239.pdf
    • Vancouver

      Gonçalves DL, Hayat C, Mello MH de PL, Zieschang H. Spin-structures of bundles on surfaces and the fundamental group [Internet]. 2007 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/3d2e89a9-ee3d-4a3a-a804-9a93824b3a59/1583239.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024