The Borsuk–Ulam theorem for maps into a surface (2010)
- Authors:
- Autor USP: GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- DOI: 10.1016/j.topol.2010.02.024
- Assunto: TOPOLOGIA ALGÉBRICA
- Keywords: Involutions; Surface; Equation on groups; Borsuk–Ulam type theorem; Surface braid groups
- Language: Inglês
- Source:
- Título: Topology and its Applications
- ISSN: 0166-8641
- Volume/Número/Paginação/Ano: v. 157, n. 10-11, p. 1742-1759, 2010
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GONÇALVES, Daciberg Lima e GUASCHI, John. The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications, v. 157, n. 10-11, p. 1742-1759, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2010.02.024. Acesso em: 26 jan. 2026. -
APA
Gonçalves, D. L., & Guaschi, J. (2010). The Borsuk–Ulam theorem for maps into a surface. Topology and its Applications, 157( 10-11), 1742-1759. doi:10.1016/j.topol.2010.02.024 -
NLM
Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.topol.2010.02.024 -
Vancouver
Gonçalves DL, Guaschi J. The Borsuk–Ulam theorem for maps into a surface [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1742-1759.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.topol.2010.02.024 - Equations in free groups and coincidence of mappings on surfaces
- On automorphisms of finite Abelian p-groups
- Postnikov towers and Gottlieb groups of orbit spaces
- Primitivity of monodromy groups of branched coverings: a non-orientable case
- Free and properly discontinuous actions of groups G⋊Zm and G1∗G0G2
- Wecken type problems for self-maps of the Klein bottle
- The classification and the conjugacy classes of the finite subgroups of the sphere braid groups
- Equivariant evaluation subgroups and Rhodes groups
- Twisted conjugacy classes in nilpotent groups
- Nielsen numbers of selfmaps of Sol 3-manifolds
Informações sobre o DOI: 10.1016/j.topol.2010.02.024 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
