Filtros : "GRU016" "Springer" Removido: "Technische Universität Wien - TUWien - Wien - Austria" Limpar

Filtros



Refine with date range


  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 16 jun. 2024. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Advances in Glass Research. Unidade: IFSC

    Subjects: FOTÔNICA, VIDRO CERÂMICO, PROPRIEDADES DOS MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUAMAN, Jose Luis Clabel et al. Overall aspects of glasses for photonic devices. Advances in Glass Research. Tradução . Cham: Springer, 2023. p. 403 . Disponível em: https://doi.org/10.1007/978-3-031-20266-7_1. Acesso em: 16 jun. 2024.
    • APA

      Huaman, J. L. C., Calderón, G. L., Pinto, I. C., Falci, R. F., Rivera, V. A. G., Messaddeq, Y., & Marega Júnior, E. (2023). Overall aspects of glasses for photonic devices. In Advances in Glass Research (p. 403 ). Cham: Springer. doi:10.1007/978-3-031-20266-7_1
    • NLM

      Huaman JLC, Calderón GL, Pinto IC, Falci RF, Rivera VAG, Messaddeq Y, Marega Júnior E. Overall aspects of glasses for photonic devices [Internet]. In: Advances in Glass Research. Cham: Springer; 2023. p. 403 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-031-20266-7_1
    • Vancouver

      Huaman JLC, Calderón GL, Pinto IC, Falci RF, Rivera VAG, Messaddeq Y, Marega Júnior E. Overall aspects of glasses for photonic devices [Internet]. In: Advances in Glass Research. Cham: Springer; 2023. p. 403 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-031-20266-7_1
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, APRENDIZADO COMPUTACIONAL, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IBÁÑEZ-REDÍN, Glenda Gisela et al. A machine learning approach in wearable technologies. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_3. Acesso em: 16 jun. 2024.
    • APA

      Ibáñez-Redín, G. G., Duarte, O. S., Cagnani, G. R., & Oliveira Junior, O. N. de. (2023). A machine learning approach in wearable technologies. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_3
    • NLM

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
    • Vancouver

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 16 jun. 2024. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Handbook of animal models and its uses in cancer research. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, ÓPTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e AZEVEDO, Mirian Denise Stringasci de e BUZZÁ, Hilde Harb. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. Handbook of animal models and its uses in cancer research. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-19-3824-5_29. Acesso em: 16 jun. 2024.
    • APA

      Requena, M. B., Azevedo, M. D. S. de, & Buzzá, H. H. (2023). Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. In Handbook of animal models and its uses in cancer research. Singapore: Springer. doi:10.1007/978-981-19-3824-5_29
    • NLM

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
    • Vancouver

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, SENSORES QUÍMICOS, SENSORES ÓPTICOS, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Recent advances in machine learning for electrochemical, optical, and gas sensors. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_6. Acesso em: 16 jun. 2024.
    • APA

      Materon, E. M., Silva, F. S. R. da, Ribas, L. C., Joshi, N. K. J., Bruno, O. M., Carrilho, E., & Oliveira Junior, O. N. de. (2023). Recent advances in machine learning for electrochemical, optical, and gas sensors. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_6
    • NLM

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
    • Vancouver

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
  • Source: Advances in bioelectrochemistry. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, ELETRODO, CÉLULAS A COMBUSTÍVEL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro. Protein engineering for designing efficient bioelectrodes. Advances in bioelectrochemistry. Tradução . Cham: Springer, 2022. v. 4. . Disponível em: https://doi.org/10.1007/978-3-030-99662-8_1. Acesso em: 16 jun. 2024.
    • APA

      Pereira, A. R. (2022). Protein engineering for designing efficient bioelectrodes. In Advances in bioelectrochemistry (Vol. 4). Cham: Springer. doi:10.1007/978-3-030-99662-8_1
    • NLM

      Pereira AR. Protein engineering for designing efficient bioelectrodes [Internet]. In: Advances in bioelectrochemistry. Cham: Springer; 2022. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-99662-8_1
    • Vancouver

      Pereira AR. Protein engineering for designing efficient bioelectrodes [Internet]. In: Advances in bioelectrochemistry. Cham: Springer; 2022. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-99662-8_1
  • Source: Molecular architectonics and nanoarchitectonics. Unidades: IQSC, IFSC

    Subjects: SENSOR, FILMES FINOS, MATERIAIS NANOESTRUTURADOS, POLÍMEROS (MATERIAIS), BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro et al. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. Molecular architectonics and nanoarchitectonics. Tradução . Singapore: Springer, 2022. p. 548 . Disponível em: https://doi.org/10.1007/978-981-16-4189-3_19. Acesso em: 16 jun. 2024.
    • APA

      Pereira, A. R., Melo, A. F. A. de A., Crespilho, F. N., & Oliveira Junior, O. N. de. (2022). Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. In Molecular architectonics and nanoarchitectonics (p. 548 ). Singapore: Springer. doi:10.1007/978-981-16-4189-3_19
    • NLM

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
    • Vancouver

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
  • Source: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Unidade: IFSC

    Subjects: HIDROXIAPATITA, LUMINESCÊNCIA, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Thales Rafael et al. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite. Research topics in bioactivity, environment and energy: experimental and theoretical tools. Tradução . Cham: Springer, 2022. p. 734 . Disponível em: https://doi.org/10.1007/978-3-031-07622-0_5. Acesso em: 16 jun. 2024.
    • APA

      Machado, T. R., Silva, J. S. da, Cordoncillo, E., Beltrán-Mir, H., Andrés, J., Zucolotto, V., & Longo, E. (2022). Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite. In Research topics in bioactivity, environment and energy: experimental and theoretical tools (p. 734 ). Cham: Springer. doi:10.1007/978-3-031-07622-0_5
    • NLM

      Machado TR, Silva JS da, Cordoncillo E, Beltrán-Mir H, Andrés J, Zucolotto V, Longo E. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite [Internet]. In: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Cham: Springer; 2022. p. 734 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-031-07622-0_5
    • Vancouver

      Machado TR, Silva JS da, Cordoncillo E, Beltrán-Mir H, Andrés J, Zucolotto V, Longo E. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite [Internet]. In: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Cham: Springer; 2022. p. 734 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-031-07622-0_5
  • Source: Handbook of oxidative stress in cancer: therapeutic aspects. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, CARCINOMA BASOCELULAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e SÁLVIO, Ana Gabriela e BAGNATO, Vanderlei Salvador. Advances in photodynamic protocols for nonmelanoma skin cancer. Handbook of oxidative stress in cancer: therapeutic aspects. Tradução . Singapore: Springer, 2022. . Disponível em: https://doi.org/10.1007/978-981-16-5422-0_198. Acesso em: 16 jun. 2024.
    • APA

      Requena, M. B., Sálvio, A. G., & Bagnato, V. S. (2022). Advances in photodynamic protocols for nonmelanoma skin cancer. In Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer. doi:10.1007/978-981-16-5422-0_198
    • NLM

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
    • Vancouver

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
  • Source: Nanocarriers for drug delivery. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), BIOMEDICINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LINS, Paula Maria Pincela et al. Inorganic nanoparticles for biomedical applications. Nanocarriers for drug delivery. Tradução . Cham: Springer, 2021. p. 347 . Disponível em: https://doi.org/10.1007/978-3-030-63389-9_3. Acesso em: 16 jun. 2024.
    • APA

      Lins, P. M. P., Ribovski, L., Sampaio, I., Santos, O. A., Zucolotto, V., & Bernardi, J. C. (2021). Inorganic nanoparticles for biomedical applications. In Nanocarriers for drug delivery (p. 347 ). Cham: Springer. doi:10.1007/978-3-030-63389-9_3
    • NLM

      Lins PMP, Ribovski L, Sampaio I, Santos OA, Zucolotto V, Bernardi JC. Inorganic nanoparticles for biomedical applications [Internet]. In: Nanocarriers for drug delivery. Cham: Springer; 2021. p. 347 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-63389-9_3
    • Vancouver

      Lins PMP, Ribovski L, Sampaio I, Santos OA, Zucolotto V, Bernardi JC. Inorganic nanoparticles for biomedical applications [Internet]. In: Nanocarriers for drug delivery. Cham: Springer; 2021. p. 347 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-63389-9_3
  • Source: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, MONITORIZAÇÃO FISIOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIYAKAZI, Celina M. et al. Metal oxides and sulfide-based biosensor for monitoring and health control. Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Tradução . Cham: Springer, 2021. p. 340 . Disponível em: https://doi.org/10.1007/978-3-030-63791-0_6. Acesso em: 16 jun. 2024.
    • APA

      Miyakazi, C. M., Joshi, N. K. J., Shimizu, F. M., & Oliveira Junior, O. N. de. (2021). Metal oxides and sulfide-based biosensor for monitoring and health control. In Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors (p. 340 ). Cham: Springer. doi:10.1007/978-3-030-63791-0_6
    • NLM

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
    • Vancouver

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
  • Source: Lasers in oral and maxillofacial surgery. Unidade: IFSC

    Subjects: TERAPIA FOTODINÂMICA, NEOPLASIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERALDE, Mariana Carreira et al. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control. Lasers in oral and maxillofacial surgery. Tradução . Cham: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-3-030-29604-9_5. Acesso em: 16 jun. 2024.
    • APA

      Geralde, M. C., Requena, M. B., Faria, C. M. G., Kurachi, C., Pratavieira, S., & Bagnato, V. S. (2020). Photodynamic reactions for the treatment of oral-facial lesions and microbiological control. In Lasers in oral and maxillofacial surgery. Cham: Springer. doi:10.1007/978-3-030-29604-9_5
    • NLM

      Geralde MC, Requena MB, Faria CMG, Kurachi C, Pratavieira S, Bagnato VS. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control [Internet]. In: Lasers in oral and maxillofacial surgery. Cham: Springer; 2020. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-29604-9_5
    • Vancouver

      Geralde MC, Requena MB, Faria CMG, Kurachi C, Pratavieira S, Bagnato VS. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control [Internet]. In: Lasers in oral and maxillofacial surgery. Cham: Springer; 2020. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-29604-9_5
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, RADIAÇÃO ULTRAVIOLETA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav et al. Recent advances on UV-enhanced oxide nanostructures gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_6. Acesso em: 16 jun. 2024.
    • APA

      Joshi, N., Tomer, V. K., Malik, R., & Nie, J. (2020). Recent advances on UV-enhanced oxide nanostructures gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_6
    • NLM

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
    • Vancouver

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
  • Source: Essentials of cancer genomic, computational approaches and precision medicine. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, NEOPLASIAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIBI, Naheed e AWAN, Iram Taj e AWAN, Almas Taj. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. Essentials of cancer genomic, computational approaches and precision medicine. Tradução . Singapore: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-981-15-1067-0_5. Acesso em: 16 jun. 2024.
    • APA

      Bibi, N., Awan, I. T., & Awan, A. T. (2020). New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. In Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer. doi:10.1007/978-981-15-1067-0_5
    • NLM

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
    • Vancouver

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
  • Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Functional nanomaterials: advances in gas sensing technologies. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-15-4810-9. Acesso em: 16 jun. 2024. , 2020
    • APA

      Functional nanomaterials: advances in gas sensing technologies. (2020). Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer. doi:10.1007/978-981-15-4810-9
    • NLM

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
    • Vancouver

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
  • Source: Nanosensors for environmental applications. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Two-dimensional transition metal dichalcogenides for gas sensing applications. Nanosensors for environmental applications. Tradução . Cham: Springer, 2020. p. 302 . Disponível em: https://doi.org/10.1007/978-3-030-38101-1_4. Acesso em: 16 jun. 2024.
    • APA

      Joshi, N. K. J., Braunger, M. L., Shimizu, F. M., Riul Jr., A., & Oliveira Junior, O. N. de. (2020). Two-dimensional transition metal dichalcogenides for gas sensing applications. In Nanosensors for environmental applications (p. 302 ). Cham: Springer. doi:10.1007/978-3-030-38101-1_4
    • NLM

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Jr. A, Oliveira Junior ON de. Two-dimensional transition metal dichalcogenides for gas sensing applications [Internet]. In: Nanosensors for environmental applications. Cham: Springer; 2020. p. 302 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-38101-1_4
    • Vancouver

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Jr. A, Oliveira Junior ON de. Two-dimensional transition metal dichalcogenides for gas sensing applications [Internet]. In: Nanosensors for environmental applications. Cham: Springer; 2020. p. 302 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-3-030-38101-1_4
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MISHRA, Prashant Kumar et al. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_11. Acesso em: 16 jun. 2024.
    • APA

      Mishra, P. K., Malik, R., Tomer, V. K., & Joshi, N. (2020). Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_11
    • NLM

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
    • Vancouver

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, ELETRODO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUSAIN, Abhay. Carbon nanotube based wearable room temperature gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_13. Acesso em: 16 jun. 2024.
    • APA

      Gusain, A. (2020). Carbon nanotube based wearable room temperature gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_13
    • NLM

      Gusain A. Carbon nanotube based wearable room temperature gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_13
    • Vancouver

      Gusain A. Carbon nanotube based wearable room temperature gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_13
  • Source: European Biophysics Journal. Conference titles: European Biophysics Congress - EBSA. Unidades: IFSC, IF

    Subjects: PROTEÍNAS, TERMODINÂMICA, CRISTALOGRAFIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUMAGAI, Patricia Suemy et al. Physiological septin-septin interactions prevents amyloid filaments formation. European Biophysics Journal. Heidelberg: Springer. Disponível em: https://doi.org/10.1007/s00249-019-01373-4. Acesso em: 16 jun. 2024. , 2019
    • APA

      Kumagai, P. S., Martins, C. S., Sales, E. M., Itri, R., & Araújo, A. P. U. de. (2019). Physiological septin-septin interactions prevents amyloid filaments formation. European Biophysics Journal. Heidelberg: Springer. doi:10.1007/s00249-019-01373-4
    • NLM

      Kumagai PS, Martins CS, Sales EM, Itri R, Araújo APU de. Physiological septin-septin interactions prevents amyloid filaments formation [Internet]. European Biophysics Journal. 2019 ; 48 S149.[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/s00249-019-01373-4
    • Vancouver

      Kumagai PS, Martins CS, Sales EM, Itri R, Araújo APU de. Physiological septin-septin interactions prevents amyloid filaments formation [Internet]. European Biophysics Journal. 2019 ; 48 S149.[citado 2024 jun. 16 ] Available from: https://doi.org/10.1007/s00249-019-01373-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024