Filtros : "Universidade Federal de Viçosa (UFV)" "ICMC-SMA" Removidos: "Nigéria" "ALPA/ACPA" "INTER:ICMC-UFSCAR" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, M. S et al. Non-homogeneous thermoelastic Timoshenko systems. Bulletin of the Brazilian Mathematical Society, v. 48, n. 3, p. Se 2017, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00574-017-0030-3. Acesso em: 10 nov. 2024.
    • APA

      Alves, M. S., Silva, M. A. J., Ma, T. F., & Rivera, J. E. M. (2017). Non-homogeneous thermoelastic Timoshenko systems. Bulletin of the Brazilian Mathematical Society, 48( 3), Se 2017. doi:10.1007/s00574-017-0030-3
    • NLM

      Alves MS, Silva MAJ, Ma TF, Rivera JEM. Non-homogeneous thermoelastic Timoshenko systems [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 3): Se 2017.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00574-017-0030-3
    • Vancouver

      Alves MS, Silva MAJ, Ma TF, Rivera JEM. Non-homogeneous thermoelastic Timoshenko systems [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 3): Se 2017.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00574-017-0030-3
  • Source: Contributions to nonlinear elliptic equations and systems : a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. Critical and noncritical regions on the critical hyperbola. Contributions to nonlinear elliptic equations and systems : a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday. Cham: Springer/Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-19902-3_21. Acesso em: 10 nov. 2024. , 2015
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). Critical and noncritical regions on the critical hyperbola. Contributions to nonlinear elliptic equations and systems : a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday. Cham: Springer/Birkhäuser. doi:10.1007/978-3-319-19902-3_21
    • NLM

      Melo JLF, Moreira dos Santos E. Critical and noncritical regions on the critical hyperbola [Internet]. Contributions to nonlinear elliptic equations and systems : a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday. 2015 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/978-3-319-19902-3_21
    • Vancouver

      Melo JLF, Moreira dos Santos E. Critical and noncritical regions on the critical hyperbola [Internet]. Contributions to nonlinear elliptic equations and systems : a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday. 2015 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/978-3-319-19902-3_21
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 551-574, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.026. Acesso em: 10 nov. 2024.
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.026
    • Vancouver

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.026
  • Source: Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Ó, Joao Marcos Bezerra do e MIYAGAKI, Olimpio Hiroshi e SOARES, Sérgio Henrique Monari. Soliton solutions for quasilinear Schrödinger equations with critical growth. Journal of Differential Equations, v. 248, n. 4, p. 722-744, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2009.11.030. Acesso em: 10 nov. 2024.
    • APA

      Ó, J. M. B. do, Miyagaki, O. H., & Soares, S. H. M. (2010). Soliton solutions for quasilinear Schrödinger equations with critical growth. Journal of Differential Equations, 248( 4), 722-744. doi:10.1016/j.jde.2009.11.030
    • NLM

      Ó JMB do, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations with critical growth [Internet]. Journal of Differential Equations. 2010 ; 248( 4): 722-744.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2009.11.030
    • Vancouver

      Ó JMB do, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations with critical growth [Internet]. Journal of Differential Equations. 2010 ; 248( 4): 722-744.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2009.11.030
  • Source: Nonlinear Analysis : Theory, Methods and Applications. Unidade: ICMC

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Ó, João Marcos Bezerra do e MIYAGAKI, Olimpio Hiroshi e SOARES, Sérgio Henrique Monari. Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Analysis : Theory, Methods and Applications, v. 67, n. 12, p. 3357-3372, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.na.2006.10.018. Acesso em: 10 nov. 2024.
    • APA

      Ó, J. M. B. do, Miyagaki, O. H., & Soares, S. H. M. (2007). Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Analysis : Theory, Methods and Applications, 67( 12), 3357-3372. doi:10.1016/j.na.2006.10.018
    • NLM

      Ó JMB do, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations: the critical exponential case [Internet]. Nonlinear Analysis : Theory, Methods and Applications. 2007 ; 67( 12): 3357-3372.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2006.10.018
    • Vancouver

      Ó JMB do, Miyagaki OH, Soares SHM. Soliton solutions for quasilinear Schrödinger equations: the critical exponential case [Internet]. Nonlinear Analysis : Theory, Methods and Applications. 2007 ; 67( 12): 3357-3372.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2006.10.018
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e GENTILE, Claudia Buttarello. Comparison results for nonlinear parabolic equations with monotone principal part. Journal of Mathematical Analysis and Applications, v. 319-337, 2001Tradução . . Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, & Gentile, C. B. (2001). Comparison results for nonlinear parabolic equations with monotone principal part. Journal of Mathematical Analysis and Applications, 319-337.
    • NLM

      Carvalho AN de, Gentile CB. Comparison results for nonlinear parabolic equations with monotone principal part. Journal of Mathematical Analysis and Applications. 2001 ; 319-337[citado 2024 nov. 10 ]
    • Vancouver

      Carvalho AN de, Gentile CB. Comparison results for nonlinear parabolic equations with monotone principal part. Journal of Mathematical Analysis and Applications. 2001 ; 319-337[citado 2024 nov. 10 ]
  • Source: Cadernos de Matemática. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e GENTILE, Claudia Buttarello. Comparison results for nonlinear parabolic equations with monotone principal part. Cadernos de Matemática, v. 01, n. 01, p. 167-184, 2000Tradução . . Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, & Gentile, C. B. (2000). Comparison results for nonlinear parabolic equations with monotone principal part. Cadernos de Matemática, 01( 01), 167-184.
    • NLM

      Carvalho AN de, Gentile CB. Comparison results for nonlinear parabolic equations with monotone principal part. Cadernos de Matemática. 2000 ;01( 01): 167-184.[citado 2024 nov. 10 ]
    • Vancouver

      Carvalho AN de, Gentile CB. Comparison results for nonlinear parabolic equations with monotone principal part. Cadernos de Matemática. 2000 ;01( 01): 167-184.[citado 2024 nov. 10 ]
  • Source: Cadernos de Matemática. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e GENTILE, Claudia Buttarello. Asymptotic behaviour of nonlinear parabolic equations with monotone principal part. Cadernos de Matemática, v. 01, n. 01, p. 145-166, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0022-247x(03)00037-4. Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, & Gentile, C. B. (2000). Asymptotic behaviour of nonlinear parabolic equations with monotone principal part. Cadernos de Matemática, 01( 01), 145-166. doi:10.1016/s0022-247x(03)00037-4
    • NLM

      Carvalho AN de, Gentile CB. Asymptotic behaviour of nonlinear parabolic equations with monotone principal part [Internet]. Cadernos de Matemática. 2000 ;01( 01): 145-166.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/s0022-247x(03)00037-4
    • Vancouver

      Carvalho AN de, Gentile CB. Asymptotic behaviour of nonlinear parabolic equations with monotone principal part [Internet]. Cadernos de Matemática. 2000 ;01( 01): 145-166.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/s0022-247x(03)00037-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024