Exportar registro bibliográfico


Metrics:

Non-homogeneous thermoelastic Timoshenko systems (2017)

  • Authors:
  • Autor USP: FU, MA TO - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s00574-017-0030-3
  • Subjects: EQUAÇÕES DIFERENCIAIS; SISTEMAS DINÂMICOS
  • Keywords: Timoshenko systems; Thermoelasticity; Non-homogeneous coefficients; Exponential stability; Polynomial stability
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00574-017-0030-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALVES, M. S; SILVA, M. A. Jorge; MA, To Fu; RIVERA, J. E. Muñoz. Non-homogeneous thermoelastic Timoshenko systems. Bulletin of the Brazilian Mathematical Society, Heidelberg, Springer, v. 48, n. 3, p. Se 2017, 2017. Disponível em: < http://dx.doi.org/10.1007/s00574-017-0030-3 > DOI: 10.1007/s00574-017-0030-3.
    • APA

      Alves, M. S., Silva, M. A. J., Ma, T. F., & Rivera, J. E. M. (2017). Non-homogeneous thermoelastic Timoshenko systems. Bulletin of the Brazilian Mathematical Society, 48( 3), Se 2017. doi:10.1007/s00574-017-0030-3
    • NLM

      Alves MS, Silva MAJ, Ma TF, Rivera JEM. Non-homogeneous thermoelastic Timoshenko systems [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 3): Se 2017.Available from: http://dx.doi.org/10.1007/s00574-017-0030-3
    • Vancouver

      Alves MS, Silva MAJ, Ma TF, Rivera JEM. Non-homogeneous thermoelastic Timoshenko systems [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 3): Se 2017.Available from: http://dx.doi.org/10.1007/s00574-017-0030-3

    Referências citadas na obra
    Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36, 1965–1976 (2013)
    Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys. 65, 1233–1249 (2014)
    Ammar-Khodja, F., Benabdallah, A., Muñoz Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194, 82–115 (2003)
    Ammar-Khodja, F., Kerbal, S., Soufyane, A.: Stabilization of the nonuniform Timoshenko beam. J. Math. Anal. Appl. 327, 525–538 (2007)
    Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Falcão Nascimento, F.A., Lasiecka, I., Rodrigues, J.H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65, 1189–1206 (2014)
    Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin–Pipkin thermal law. J. Differ. Equ. 257, 523–548 (2014)
    Fatori, L.H., Muñoz Rivera, J.E., Monteiro, R.N.: Energy decay to Timoshenko’s system with thermoelasticity of type III. Asymptot. Anal. 86, 227–247 (2014)
    Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194, 221–251 (2009)
    Gearhart, L.: Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)
    Jorge Silva, M.A., Ma, T.F., Muñoz Rivera, J.E.: Stability of non-homogeneous Timoshenko systems. Preprint (2016)
    Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417–1429 (1987)
    Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhaüser, Boston (1994)
    Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC, Boca Raton (1999)
    Mori, N., Xu, J., Kawashima, S.: Global existence and optimal decay rates for the Timoshenko system: the case of equal wave speeds. J. Differ. Equ. 258, 1494–1518 (2015)
    Muñoz Rivera, J.E., Ávila, A.I.: Rates of decay to non homogeneous Timoshenko model with tip body. J. Differ. Equ. 258, 3468–3490 (2015)
    Muñoz Rivera, J.E., Racke, R.: Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability. J. Math. Anal. Appl. 276, 248–278 (2002)
    Olsson, P., Kristensson, G.: Wave splitting of the Timoshenko beam equation in the time domain. Z. Angew. Math. Phys. 45, 866–881 (1994)
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)
    Prüss, J.: On the spectrum of $$C_0$$ C 0 -semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)
    Raposo, C.A., Ferreira, J., Santos, M.L., Castro, N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18, 535–541 (2005)
    Said-Houari, B., Kasimov, A.: Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same. J. Differ. Equ. 255, 611–632 (2013)
    Santos, M.L., Almeida Júnior, D.S., Muñoz Rivera, J.E.: The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253, 2715–2733 (2012)
    Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér. I Math. 328, 731–734 (1999)
    Soufyane, A.: Exponential stability of the linearized nonuniform Timoshenko beam. Nonlinear Anal. Real World Appl. 10, 1016–1020 (2009)
    Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6 41(245), 744–746 (1921)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020