Filtros : "Financiamento MCTI" "IQSC" Removidos: "Eduardo, Carlos de Paula" "FCFRP-602" "2022" "Lente Substituto" Limpar

Filtros



Refine with date range


  • Source: Food Research International. Unidade: IQSC

    Subjects: BIOFILMES, BACTÉRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASSOS, Tathiane Ferroni e NITSCHKE, Marcia. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids. Food Research International, v. 192, p. 114744, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.foodres.2024.114744. Acesso em: 13 out. 2024.
    • APA

      Passos, T. F., & Nitschke, M. (2024). The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids. Food Research International, 192, 114744. doi:10.1016/j.foodres.2024.114744
    • NLM

      Passos TF, Nitschke M. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids [Internet]. Food Research International. 2024 ;192 114744.[citado 2024 out. 13 ] Available from: https://doi.org/10.1016/j.foodres.2024.114744
    • Vancouver

      Passos TF, Nitschke M. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids [Internet]. Food Research International. 2024 ;192 114744.[citado 2024 out. 13 ] Available from: https://doi.org/10.1016/j.foodres.2024.114744
  • Source: Advanced Science. Unidade: IQSC

    Subjects: CATALISADORES, ENZIMAS, OXIDAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SEDENHO, Graziela Cristina et al. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency. Advanced Science, p. 2402234, 2024Tradução . . Disponível em: https://doi.org/10.1002/advs.202402234. Acesso em: 13 out. 2024.
    • APA

      Sedenho, G. C., Nascimento, S. Q., Zamani, M., Crespilho, F. N., & Furst, A. L. (2024). Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency. Advanced Science, 2402234. doi:10.1002/advs.202402234
    • NLM

      Sedenho GC, Nascimento SQ, Zamani M, Crespilho FN, Furst AL. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency [Internet]. Advanced Science. 2024 ;2402234.[citado 2024 out. 13 ] Available from: https://doi.org/10.1002/advs.202402234
    • Vancouver

      Sedenho GC, Nascimento SQ, Zamani M, Crespilho FN, Furst AL. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency [Internet]. Advanced Science. 2024 ;2402234.[citado 2024 out. 13 ] Available from: https://doi.org/10.1002/advs.202402234
  • Source: Journal of Cleaner Production. Unidade: IQSC

    Subjects: SUSTENTABILIDADE, ADSORÇÃO, SENSOR, MATERIAIS NANOESTRUTURADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARENGA, Augusto D. et al. Multifunctional and sustainable soot-modified nanofibrous membrane for adsorption, sensing and hydrogen peroxide electrogeneration. Journal of Cleaner Production, v. 422, p. 138697, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jclepro.2023.138697. Acesso em: 13 out. 2024.
    • APA

      Alvarenga, A. D., Facure, M. H. M., Montes, I. S., Santos, G. O. S., Lanza, M. R. de V., Mercante, L. A., & Correa, D. S. (2023). Multifunctional and sustainable soot-modified nanofibrous membrane for adsorption, sensing and hydrogen peroxide electrogeneration. Journal of Cleaner Production, 422, 138697. doi:10.1016/j.jclepro.2023.138697
    • NLM

      Alvarenga AD, Facure MHM, Montes IS, Santos GOS, Lanza MR de V, Mercante LA, Correa DS. Multifunctional and sustainable soot-modified nanofibrous membrane for adsorption, sensing and hydrogen peroxide electrogeneration [Internet]. Journal of Cleaner Production. 2023 ;422 138697.[citado 2024 out. 13 ] Available from: https://doi.org/10.1016/j.jclepro.2023.138697
    • Vancouver

      Alvarenga AD, Facure MHM, Montes IS, Santos GOS, Lanza MR de V, Mercante LA, Correa DS. Multifunctional and sustainable soot-modified nanofibrous membrane for adsorption, sensing and hydrogen peroxide electrogeneration [Internet]. Journal of Cleaner Production. 2023 ;422 138697.[citado 2024 out. 13 ] Available from: https://doi.org/10.1016/j.jclepro.2023.138697
  • Source: Energy and Fuels. Unidades: IQSC, IFSC

    Subjects: CATÁLISE, GÁS CARBÔNICO, COMPOSTOS INORGÂNICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAJA, Sebastian et al. Perylenediimide-incorporated covalent triazine framework: a highly conductive carbon support for copper single-atom catalysts in electrocatalytic CO2 conversion. Energy and Fuels, v. 37, n. 23, p. 19113-19123 + supporting information, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.energyfuels.3c03268. Acesso em: 13 out. 2024.
    • APA

      Raja, S., Silva, G. T. dos S. T. da, Reis, E. A. dos, Cruz, J. C. da, Silva, A. B. da, Andrade, M. B. de, et al. (2023). Perylenediimide-incorporated covalent triazine framework: a highly conductive carbon support for copper single-atom catalysts in electrocatalytic CO2 conversion. Energy and Fuels, 37( 23), 19113-19123 + supporting information. doi:10.1021/acs.energyfuels.3c03268
    • NLM

      Raja S, Silva GT dos ST da, Reis EA dos, Cruz JC da, Silva AB da, Andrade MB de, Periyasami G, Karthikeyan P, Perepichka IF, Mascaro LH, Ribeiro C. Perylenediimide-incorporated covalent triazine framework: a highly conductive carbon support for copper single-atom catalysts in electrocatalytic CO2 conversion [Internet]. Energy and Fuels. 2023 ; 37( 23): 19113-19123 + supporting information.[citado 2024 out. 13 ] Available from: https://doi.org/10.1021/acs.energyfuels.3c03268
    • Vancouver

      Raja S, Silva GT dos ST da, Reis EA dos, Cruz JC da, Silva AB da, Andrade MB de, Periyasami G, Karthikeyan P, Perepichka IF, Mascaro LH, Ribeiro C. Perylenediimide-incorporated covalent triazine framework: a highly conductive carbon support for copper single-atom catalysts in electrocatalytic CO2 conversion [Internet]. Energy and Fuels. 2023 ; 37( 23): 19113-19123 + supporting information.[citado 2024 out. 13 ] Available from: https://doi.org/10.1021/acs.energyfuels.3c03268
  • Source: Catalysts. Unidade: IQSC

    Assunto: FOTOCATÁLISE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      XAVIER, Chubraider et al. Using a surface-response approach to optimize the photocatalytic activity of rGO/g-C3N4 for bisphenol a degradation. Catalysts, 2023Tradução . . Disponível em: https://doi.org/10.3390/catal13071069. Acesso em: 13 out. 2024.
    • APA

      Xavier, C., Lopes, B. R., Lima, C. de S., Ribeiro, C., & Azevedo, E. B. (2023). Using a surface-response approach to optimize the photocatalytic activity of rGO/g-C3N4 for bisphenol a degradation. Catalysts. doi:10.3390/catal13071069
    • NLM

      Xavier C, Lopes BR, Lima C de S, Ribeiro C, Azevedo EB. Using a surface-response approach to optimize the photocatalytic activity of rGO/g-C3N4 for bisphenol a degradation [Internet]. Catalysts. 2023 ;[citado 2024 out. 13 ] Available from: https://doi.org/10.3390/catal13071069
    • Vancouver

      Xavier C, Lopes BR, Lima C de S, Ribeiro C, Azevedo EB. Using a surface-response approach to optimize the photocatalytic activity of rGO/g-C3N4 for bisphenol a degradation [Internet]. Catalysts. 2023 ;[citado 2024 out. 13 ] Available from: https://doi.org/10.3390/catal13071069
  • Source: Journal of Polymer Research. Unidade: IQSC

    Subjects: MATERIAIS NANOESTRUTURADOS, CARBONO, LIGNINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZAGA, Lais A. Camargo de et al. Production of carbon nanofibers from PAN and lignin by solution blow spinning. Journal of Polymer Research, v. 28, p. 237, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10965-021-02568-0. Acesso em: 13 out. 2024.
    • APA

      Gonzaga, L. A. C. de, Martins, M. C. F., Correa, A. C., Facchinatto, W. M., Silva, C. M. P. da, Colnago, L. A., & Mattoso, L. H. C. (2021). Production of carbon nanofibers from PAN and lignin by solution blow spinning. Journal of Polymer Research, 28, 237. doi:10.1007/s10965-021-02568-0
    • NLM

      Gonzaga LAC de, Martins MCF, Correa AC, Facchinatto WM, Silva CMP da, Colnago LA, Mattoso LHC. Production of carbon nanofibers from PAN and lignin by solution blow spinning [Internet]. Journal of Polymer Research. 2021 ; 28 237.[citado 2024 out. 13 ] Available from: https://doi.org/10.1007/s10965-021-02568-0
    • Vancouver

      Gonzaga LAC de, Martins MCF, Correa AC, Facchinatto WM, Silva CMP da, Colnago LA, Mattoso LHC. Production of carbon nanofibers from PAN and lignin by solution blow spinning [Internet]. Journal of Polymer Research. 2021 ; 28 237.[citado 2024 out. 13 ] Available from: https://doi.org/10.1007/s10965-021-02568-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024