Source: Journal of Petroleum Science and Engineering. Unidade: EP
Subjects: PETROGRAFIA, INTELIGÊNCIA ARTIFICIAL
ABNT
TAMOTO, Hugo e GIORIA, Rafael dos Santos e CARNEIRO, Cleyton de Carvalho. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, v. 220, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.petrol.2022.111169. Acesso em: 16 nov. 2024.APA
Tamoto, H., Gioria, R. dos S., & Carneiro, C. de C. (2024). Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models. Journal of Petroleum Science and Engineering, 220, 10 . doi:10.1016/j.petrol.2022.111169NLM
Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169Vancouver
Tamoto H, Gioria R dos S, Carneiro C de C. Prediction of nuclear magnetic resonance porosity well-logs in a carbonate reservoir using supervised machine learning models [Internet]. Journal of Petroleum Science and Engineering. 2024 ; 220 10 .[citado 2024 nov. 16 ] Available from: https://doi.org/10.1016/j.petrol.2022.111169