Filtros : "APRENDIZADO COMPUTACIONAL" "Financiamento Petrobras" Removido: "Congresso da Sociedade Brasileira de Medicina Tropical" Limpar

Filtros



Refine with date range


  • Source: Geophysical prospecting. Unidade: EP

    Subjects: PRÉ-SAL, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Lucas Abreu Blanes de et al. Hybrid mineral model integrating probabilistic and machine learning approaches for the Brazilian pre-salt carbonate reservoirs. Geophysical prospecting, p. 1-29, 2023Tradução . . Disponível em: https://doi.org/10.1111/1365-2478.13378. Acesso em: 16 nov. 2024.
    • APA

      Oliveira, L. A. B. de, Freitas, G. D. N., Pesce, P. B. C., & Carneiro, C. de C. (2023). Hybrid mineral model integrating probabilistic and machine learning approaches for the Brazilian pre-salt carbonate reservoirs. Geophysical prospecting, 1-29. doi:10.1111/1365-2478.13378
    • NLM

      Oliveira LAB de, Freitas GDN, Pesce PBC, Carneiro C de C. Hybrid mineral model integrating probabilistic and machine learning approaches for the Brazilian pre-salt carbonate reservoirs [Internet]. Geophysical prospecting. 2023 ;1-29.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1111/1365-2478.13378
    • Vancouver

      Oliveira LAB de, Freitas GDN, Pesce PBC, Carneiro C de C. Hybrid mineral model integrating probabilistic and machine learning approaches for the Brazilian pre-salt carbonate reservoirs [Internet]. Geophysical prospecting. 2023 ;1-29.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1111/1365-2478.13378
  • Source: Energies. Unidade: EP

    Subjects: PERMEABILIDADE DO SOLO, RESERVATÓRIOS, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REGINATO, Leonardo Fonseca e GIORIA, Rafael dos Santos e PINTO, Marcio Augusto Sampaio. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection. Energies, v. 16, n. 13, 2023Tradução . . Disponível em: https://doi.org/10.3390/en16134849. Acesso em: 16 nov. 2024.
    • APA

      Reginato, L. F., Gioria, R. dos S., & Pinto, M. A. S. (2023). Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection. Energies, 16( 13). doi:10.3390/en16134849
    • NLM

      Reginato LF, Gioria R dos S, Pinto MAS. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection [Internet]. Energies. 2023 ;16( 13):[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/en16134849
    • Vancouver

      Reginato LF, Gioria R dos S, Pinto MAS. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection [Internet]. Energies. 2023 ;16( 13):[citado 2024 nov. 16 ] Available from: https://doi.org/10.3390/en16134849

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024