Filtros : "Paquistão" "Gul, Saima" "Chemosphere" Limpar

Filtros



Refine with date range


  • Source: Chemosphere. Unidade: IQSC

    Subjects: INTELIGÊNCIA ARTIFICIAL, REDES NEURAIS, ANTIBIÓTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUL, Saima et al. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. Chemosphere, v. 357, p. 141868, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.chemosphere.2024.141868. Acesso em: 02 nov. 2024.
    • APA

      Gul, S., Hussain, S., Khan, H., Arshad, M., Khan, J. R., & Motheo, A. de J. (2024). Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. Chemosphere, 357, 141868. doi:10.1016/j.chemosphere.2024.141868
    • NLM

      Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo A de J. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach [Internet]. Chemosphere. 2024 ; 357 141868.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.chemosphere.2024.141868
    • Vancouver

      Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo A de J. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach [Internet]. Chemosphere. 2024 ; 357 141868.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.chemosphere.2024.141868
  • Source: Chemosphere. Unidade: IQSC

    Subjects: TRATAMENTO QUÍMICO DE ÁGUAS RESIDUÁRIAS, FÁRMACOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUSSAIN, Sajjad et al. Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study. Chemosphere, v. 276, n. 130151 August 2021, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.chemosphere.2021.130151. Acesso em: 02 nov. 2024.
    • APA

      Hussain, S., Khan, H., Gul, S., Steter, J. R., & Motheo, A. de J. (2021). Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study. Chemosphere, 276( 130151 August 2021). doi:10.1016/j.chemosphere.2021.130151
    • NLM

      Hussain S, Khan H, Gul S, Steter JR, Motheo A de J. Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study [Internet]. Chemosphere. 2021 ; 276( 130151 August 2021):[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.chemosphere.2021.130151
    • Vancouver

      Hussain S, Khan H, Gul S, Steter JR, Motheo A de J. Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study [Internet]. Chemosphere. 2021 ; 276( 130151 August 2021):[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.chemosphere.2021.130151

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024