Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Polônia" Removidos: "Geografia Humana" "Lopes, R A" "se" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 10 nov. 2024.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.022
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 10 nov. 2024.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 10 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e TEIXEIRA, Marco Antonio. On pairs of polynomial planar foliations. Topological Methods in Nonlinear Analysis, v. 30, n. 1, p. 139-155, 2007Tradução . . Disponível em: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf. Acesso em: 10 nov. 2024.
    • APA

      Oliveira, R. D. dos S., & Teixeira, M. A. (2007). On pairs of polynomial planar foliations. Topological Methods in Nonlinear Analysis, 30( 1), 139-155. Recuperado de https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
    • NLM

      Oliveira RD dos S, Teixeira MA. On pairs of polynomial planar foliations [Internet]. Topological Methods in Nonlinear Analysis. 2007 ; 30( 1): 139-155.[citado 2024 nov. 10 ] Available from: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
    • Vancouver

      Oliveira RD dos S, Teixeira MA. On pairs of polynomial planar foliations [Internet]. Topological Methods in Nonlinear Analysis. 2007 ; 30( 1): 139-155.[citado 2024 nov. 10 ] Available from: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
  • Source: Annales Polonici Mathematici. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZÉ, Antonio Fernandes. Lyapunov numbers for a countable system of ordinary differential equations. Annales Polonici Mathematici, v. 51, n. 1, p. 167-178, 1990Tradução . . Disponível em: https://bibliotekanauki.pl/articles/714410. Acesso em: 10 nov. 2024.
    • APA

      Izé, A. F. (1990). Lyapunov numbers for a countable system of ordinary differential equations. Annales Polonici Mathematici, 51( 1), 167-178. Recuperado de https://bibliotekanauki.pl/articles/714410
    • NLM

      Izé AF. Lyapunov numbers for a countable system of ordinary differential equations [Internet]. Annales Polonici Mathematici. 1990 ; 51( 1): 167-178.[citado 2024 nov. 10 ] Available from: https://bibliotekanauki.pl/articles/714410
    • Vancouver

      Izé AF. Lyapunov numbers for a countable system of ordinary differential equations [Internet]. Annales Polonici Mathematici. 1990 ; 51( 1): 167-178.[citado 2024 nov. 10 ] Available from: https://bibliotekanauki.pl/articles/714410

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024