Filtros : "MECÂNICA QUÂNTICA" "Siciliano, Gaetano" "IME" Removidos: "FE" "FSP" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Differential Equations and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, MECÂNICA QUÂNTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Patricia L et al. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations and Applications, v. 22, n. 6, p. 1831-1850, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00030-015-0346-x. Acesso em: 31 out. 2024.
    • APA

      Cunha, P. L., d'Avenia, P., Pomponio, A., & Siciliano, G. (2015). A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations and Applications, 22( 6), 1831-1850. doi:10.1007/s00030-015-0346-x
    • NLM

      Cunha PL, d'Avenia P, Pomponio A, Siciliano G. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity [Internet]. Nonlinear Differential Equations and Applications. 2015 ; 22( 6): 1831-1850.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00030-015-0346-x
    • Vancouver

      Cunha PL, d'Avenia P, Pomponio A, Siciliano G. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity [Internet]. Nonlinear Differential Equations and Applications. 2015 ; 22( 6): 1831-1850.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00030-015-0346-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024