A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity (2015)
- Authors:
- Autor USP: SICILIANO, GAETANO - IME
- Unidade: IME
- DOI: 10.1007/s00030-015-0346-x
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS; EQUAÇÃO DE SCHRODINGER; MECÂNICA QUÂNTICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Nonlinear Differential Equations and Applications
- ISSN: 1420-9004
- Volume/Número/Paginação/Ano: v. 22, n. 6, p. 1831-1850, Dec. 2015
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
CUNHA, Patricia L et al. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations and Applications, v. 22, n. 6, p. 1831-1850, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00030-015-0346-x. Acesso em: 10 jan. 2026. -
APA
Cunha, P. L., d'Avenia, P., Pomponio, A., & Siciliano, G. (2015). A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations and Applications, 22( 6), 1831-1850. doi:10.1007/s00030-015-0346-x -
NLM
Cunha PL, d'Avenia P, Pomponio A, Siciliano G. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity [Internet]. Nonlinear Differential Equations and Applications. 2015 ; 22( 6): 1831-1850.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00030-015-0346-x -
Vancouver
Cunha PL, d'Avenia P, Pomponio A, Siciliano G. A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity [Internet]. Nonlinear Differential Equations and Applications. 2015 ; 22( 6): 1831-1850.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00030-015-0346-x - Existence results for a doubly nonlocal equation
- Quasi-linear Schrödinger-Poisson system under an exponential critical nonlinearity: existence and asymptotic behaviour of solution
- Normalized solutions for a Schrödinger-Poisson system under a Neumann condition
- Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity
- Nonautonomous Klein–Gordon–Maxwell systems in a bounded domain
- On a fractional p&q Laplacian problem with critical growth
- Multiple solutions for some strongly degenerate second order elliptic equations
- On fractional Choquard equations
- A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in RN
- Solutions for mass subcritical and supercritical Schrödinger–Bopp–Podolsky type system with logarithmic nonlinearity
Informações sobre o DOI: 10.1007/s00030-015-0346-x (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
