Filtros : "Indexado no Science Citation Index" "Polônia" Removido: "Reunião Anual da Sociedade Brasileira de Zootecnia" Limpar

Filtros



Refine with date range


  • Source: Colloquium Mathematicum. Unidade: ICMC

    Subjects: SIMETRIA, GRUPOS DE LORENTZ, GEOMETRIA DE INCIDÊNCIA, TEORIA GEOMÉTRICA DE INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e OLIVEIRA, Leandro Nery de. Equivariant mappings and invariant sets on Minkowski space. Colloquium Mathematicum, v. 167, n. 1, p. 93-107, 2022Tradução . . Disponível em: https://doi.org/10.4064/cm7896-10-2020. Acesso em: 15 nov. 2024.
    • APA

      Manoel, M. G., & Oliveira, L. N. de. (2022). Equivariant mappings and invariant sets on Minkowski space. Colloquium Mathematicum, 167( 1), 93-107. doi:10.4064/cm7896-10-2020
    • NLM

      Manoel MG, Oliveira LN de. Equivariant mappings and invariant sets on Minkowski space [Internet]. Colloquium Mathematicum. 2022 ; 167( 1): 93-107.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/cm7896-10-2020
    • Vancouver

      Manoel MG, Oliveira LN de. Equivariant mappings and invariant sets on Minkowski space [Internet]. Colloquium Mathematicum. 2022 ; 167( 1): 93-107.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/cm7896-10-2020
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ESPAÇOS FIBRADOS, ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAPATA, Cesar Augusto Ipanaque e GONZÁLEZ, Jesús. Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 559-578, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.033. Acesso em: 15 nov. 2024.
    • APA

      Zapata, C. A. I., & González, J. (2020). Sectional category and the fixed point property. Topological Methods in Nonlinear Analysis, 56( 2), 559-578. doi:10.12775/TMNA.2020.033
    • NLM

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2020.033
    • Vancouver

      Zapata CAI, González J. Sectional category and the fixed point property [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 559-578.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2020.033
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 15 nov. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 1-23, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.048. Acesso em: 15 nov. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.048
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2018.025
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 15 nov. 2024.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 50, n. 2, p. 741-755, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.043. Acesso em: 15 nov. 2024.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2017.043
  • Source: Colloquium Mathematicum. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALLEJAS-BEDREGAL, R e JORGE PÉREZ, Victor Hugo. On Lech's limit formula for modules. Colloquium Mathematicum, v. 148, n. 1, p. 27-37, 2017Tradução . . Disponível em: https://doi.org/10.4064/cm6870-6-2016. Acesso em: 15 nov. 2024.
    • APA

      Callejas-Bedregal, R., & Jorge Pérez, V. H. (2017). On Lech's limit formula for modules. Colloquium Mathematicum, 148( 1), 27-37. doi:10.4064/cm6870-6-2016
    • NLM

      Callejas-Bedregal R, Jorge Pérez VH. On Lech's limit formula for modules [Internet]. Colloquium Mathematicum. 2017 ; 148( 1): 27-37.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/cm6870-6-2016
    • Vancouver

      Callejas-Bedregal R, Jorge Pérez VH. On Lech's limit formula for modules [Internet]. Colloquium Mathematicum. 2017 ; 148( 1): 27-37.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/cm6870-6-2016
  • Unidade: IFSC

    Assunto: ENGENHARIA MECÂNICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Materials Science-Poland. . Wroclaw: Politechnika Wroclawska. . Acesso em: 15 nov. 2024. , 2016
    • APA

      Materials Science-Poland. (2016). Materials Science-Poland. Wroclaw: Politechnika Wroclawska.
    • NLM

      Materials Science-Poland. 2016 ;[citado 2024 nov. 15 ]
    • Vancouver

      Materials Science-Poland. 2016 ;[citado 2024 nov. 15 ]
  • Source: Medical Science Monitor. Unidade: FM

    Subjects: POTENCIAIS EVOCADOS, HIV, ANTI-HIV, SÍNDROME DE IMUNODEFICIÊNCIA ADQUIRIDA, ELETROFISIOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATAS, Carla Gentile et al. Brainstem Auditory Evoked Potential in HIV-Positive Adults. Medical Science Monitor, v. 21, p. 3172-3178, 2015Tradução . . Disponível em: https://doi.org/10.12659/MSM.894958. Acesso em: 15 nov. 2024.
    • APA

      Matas, C. G., Samelli, A. G., Angrisani, R. G., Magliaro, F. C. L., & Segurado, A. C. (2015). Brainstem Auditory Evoked Potential in HIV-Positive Adults. Medical Science Monitor, 21, 3172-3178. doi:10.12659/MSM.894958
    • NLM

      Matas CG, Samelli AG, Angrisani RG, Magliaro FCL, Segurado AC. Brainstem Auditory Evoked Potential in HIV-Positive Adults [Internet]. Medical Science Monitor. 2015 ; 21 3172-3178.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.894958
    • Vancouver

      Matas CG, Samelli AG, Angrisani RG, Magliaro FCL, Segurado AC. Brainstem Auditory Evoked Potential in HIV-Positive Adults [Internet]. Medical Science Monitor. 2015 ; 21 3172-3178.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.894958
  • Source: Medical Science Monitor. Unidade: FM

    Subjects: POTENCIAIS EVOCADOS, ZUMBIDO, AUDITORIA, ELETROFISIOLOGIA, RUÍDO OCUPACIONAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHA, Valdete Alves Valentins dos e SAMELLI, Alessandra Giannella e MATAS, Carla Gentile. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise. Medical Science Monitor, v. 21, p. 2701-2706, 2015Tradução . . Disponível em: https://doi.org/10.12659/MSM.894436. Acesso em: 15 nov. 2024.
    • APA

      Santos Filha, V. A. V. dos, Samelli, A. G., & Matas, C. G. (2015). Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise. Medical Science Monitor, 21, 2701-2706. doi:10.12659/MSM.894436
    • NLM

      Santos Filha VAV dos, Samelli AG, Matas CG. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise [Internet]. Medical Science Monitor. 2015 ; 21 2701-2706.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.894436
    • Vancouver

      Santos Filha VAV dos, Samelli AG, Matas CG. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise [Internet]. Medical Science Monitor. 2015 ; 21 2701-2706.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.894436
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 15 nov. 2024.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.022
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 15 nov. 2024.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Acta Arithmetica. Unidade: ICMC

    Subjects: FUNÇÕES ALGÉBRICAS, CURVAS ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar e BORGES, Herivelto. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, v. 167, p. 43-66, 2015Tradução . . Disponível em: https://doi.org/10.4064/aa167-1-3. Acesso em: 15 nov. 2024.
    • APA

      Arakelian, N., & Borges, H. (2015). Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, 167, 43-66. doi:10.4064/aa167-1-3
    • NLM

      Arakelian N, Borges H. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/aa167-1-3
    • Vancouver

      Arakelian N, Borges H. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/aa167-1-3
  • Unidade: IFSC

    Assunto: ENGENHARIA MECÂNICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Materials Science-Poland. . Wroclaw: Politechnika Wroclawska. . Acesso em: 15 nov. 2024. , 2015
    • APA

      Materials Science-Poland. (2015). Materials Science-Poland. Wroclaw: Politechnika Wroclawska.
    • NLM

      Materials Science-Poland. 2015 ;[citado 2024 nov. 15 ]
    • Vancouver

      Materials Science-Poland. 2015 ;[citado 2024 nov. 15 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O e NEMER, Rodrigo C. M e SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 329-362, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.050. Acesso em: 15 nov. 2024.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.050
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.050
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 551-574, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.026. Acesso em: 15 nov. 2024.
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.026
    • Vancouver

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2015.026
  • Source: Medical Science Monitor. Unidade: FM

    Subjects: INFECÇÕES BACTERIANAS (INCIDÊNCIA), LÍQUIDO CEFALORRAQUIDIANO, FATORES DE RISCO, DRENAGEM

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Almir Ferreira de et al. Monoblock external ventricular drainage system in the treatment of patients with acute hydrocephalus: A pilot study. Medical Science Monitor, v. 20, p. 227-232, 2014Tradução . . Disponível em: https://doi.org/10.12659/MSM.890080. Acesso em: 15 nov. 2024.
    • APA

      Andrade, A. F. de, Paiva, W. S., Neville, I. S., Noleto, G. S., Alves Junior, A., Sandon, L. H. D., et al. (2014). Monoblock external ventricular drainage system in the treatment of patients with acute hydrocephalus: A pilot study. Medical Science Monitor, 20, 227-232. doi:10.12659/MSM.890080
    • NLM

      Andrade AF de, Paiva WS, Neville IS, Noleto GS, Alves Junior A, Sandon LHD, Bor-Seng-Shu E, Amorim RL, Teixeira MJ. Monoblock external ventricular drainage system in the treatment of patients with acute hydrocephalus: A pilot study [Internet]. Medical Science Monitor. 2014 ; 20 227-232.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.890080
    • Vancouver

      Andrade AF de, Paiva WS, Neville IS, Noleto GS, Alves Junior A, Sandon LHD, Bor-Seng-Shu E, Amorim RL, Teixeira MJ. Monoblock external ventricular drainage system in the treatment of patients with acute hydrocephalus: A pilot study [Internet]. Medical Science Monitor. 2014 ; 20 227-232.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12659/MSM.890080
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, v. 44, n. 1, p. 121-141, 2014Tradução . . Disponível em: https://doi.org/10.12775/tmna.2014.039. Acesso em: 15 nov. 2024.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2014.039
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/tmna.2014.039

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024