Filtros : "Financiado pela NSF" "Elsevier" Removidos: "Clínica Veterinária" "EDM" "PUSP-P" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational Physics. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine e WALKER, Shawn W. Optimal control of volume-preserving mean curvature flow. Journal of Computational Physics, v. 438, n. art. 110373, p. 1-39, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jcp.2021.110373. Acesso em: 17 nov. 2024.
    • APA

      Laurain, A., & Walker, S. W. (2021). Optimal control of volume-preserving mean curvature flow. Journal of Computational Physics, 438( art. 110373), 1-39. doi:10.1016/j.jcp.2021.110373
    • NLM

      Laurain A, Walker SW. Optimal control of volume-preserving mean curvature flow [Internet]. Journal of Computational Physics. 2021 ; 438( art. 110373): 1-39.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jcp.2021.110373
    • Vancouver

      Laurain A, Walker SW. Optimal control of volume-preserving mean curvature flow [Internet]. Journal of Computational Physics. 2021 ; 438( art. 110373): 1-39.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jcp.2021.110373
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics - GRACO. Unidade: IME

    Assunto: COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e SIMONOVITS, Maklós e SKOKAN, Jozef. The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2005.05.053. Acesso em: 17 nov. 2024. , 2005
    • APA

      Kohayakawa, Y., Simonovits, M., & Skokan, J. (2005). The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2005.05.053
    • NLM

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
    • Vancouver

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024