Optimal control of volume-preserving mean curvature flow (2021)
Source: Journal of Computational Physics. Unidade: IME
Subjects: OTIMIZAÇÃO MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS
ABNT
LAURAIN, Antoine e WALKER, Shawn W. Optimal control of volume-preserving mean curvature flow. Journal of Computational Physics, v. 438, n. art. 110373, p. 1-39, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jcp.2021.110373. Acesso em: 17 nov. 2024.APA
Laurain, A., & Walker, S. W. (2021). Optimal control of volume-preserving mean curvature flow. Journal of Computational Physics, 438( art. 110373), 1-39. doi:10.1016/j.jcp.2021.110373NLM
Laurain A, Walker SW. Optimal control of volume-preserving mean curvature flow [Internet]. Journal of Computational Physics. 2021 ; 438( art. 110373): 1-39.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jcp.2021.110373Vancouver
Laurain A, Walker SW. Optimal control of volume-preserving mean curvature flow [Internet]. Journal of Computational Physics. 2021 ; 438( art. 110373): 1-39.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jcp.2021.110373