Source: Knowledge-Based Systems. Unidade: ICMC
Subjects: APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE TEXTO
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROSSI, Rafael Geraldeli e LOPES, Alneu de Andrade e REZENDE, Solange Oliveira. Using bipartite heterogeneous networks to speed up inductive semi-supervised learning and improve automatic text categorization. Knowledge-Based Systems, v. 132, p. Se 2017, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.knosys.2017.06.016. Acesso em: 05 nov. 2024.APA
Rossi, R. G., Lopes, A. de A., & Rezende, S. O. (2017). Using bipartite heterogeneous networks to speed up inductive semi-supervised learning and improve automatic text categorization. Knowledge-Based Systems, 132, Se 2017. doi:10.1016/j.knosys.2017.06.016NLM
Rossi RG, Lopes A de A, Rezende SO. Using bipartite heterogeneous networks to speed up inductive semi-supervised learning and improve automatic text categorization [Internet]. Knowledge-Based Systems. 2017 ; 132 Se 2017.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.knosys.2017.06.016Vancouver
Rossi RG, Lopes A de A, Rezende SO. Using bipartite heterogeneous networks to speed up inductive semi-supervised learning and improve automatic text categorization [Internet]. Knowledge-Based Systems. 2017 ; 132 Se 2017.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.knosys.2017.06.016