Filtros : "Indexado no Science Citation Index" "Financiado pela FINEP" Removidos: "Financiado pela CAPES." "Financiamento INCT" "Italiano" Limpar

Filtros



Refine with date range


  • Source: Decision Support Systems. Unidade: ICMC

    Subjects: MINERAÇÃO DE DADOS, RECONHECIMENTO DE TEXTO, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCACINI, Ricardo Marcondes et al. Cross-domain aspect extraction for sentiment analysis: a transductive learning approach. Decision Support Systems, v. 114, p. 70-80, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.dss.2018.08.009. Acesso em: 08 nov. 2024.
    • APA

      Marcacini, R. M., Rossi, R. G., Matsuno, I. P., & Rezende, S. O. (2018). Cross-domain aspect extraction for sentiment analysis: a transductive learning approach. Decision Support Systems, 114, 70-80. doi:10.1016/j.dss.2018.08.009
    • NLM

      Marcacini RM, Rossi RG, Matsuno IP, Rezende SO. Cross-domain aspect extraction for sentiment analysis: a transductive learning approach [Internet]. Decision Support Systems. 2018 ; 114 70-80.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1016/j.dss.2018.08.009
    • Vancouver

      Marcacini RM, Rossi RG, Matsuno IP, Rezende SO. Cross-domain aspect extraction for sentiment analysis: a transductive learning approach [Internet]. Decision Support Systems. 2018 ; 114 70-80.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1016/j.dss.2018.08.009
  • Source: Physical Chemistry Chemical Physics. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, OXIGÊNIO, MAGNETISMO (PROPRIEDADES), SEMICONDUTORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERNARDI, Maria Inês Basso et al. The role of oxygen vacancies and their location in the magnetic properties of Ce1-xCuxO2-δ nanorods. Physical Chemistry Chemical Physics, v. 17, n. 5, p. 3072-3080, 2015Tradução . . Disponível em: https://doi.org/10.1039/c4cp04879b. Acesso em: 08 nov. 2024.
    • APA

      Bernardi, M. I. B., Mesquita, A., Béron, F., Pirota, K. R., Zevallos, A. O., Doriguetto, A. C., & Carvalho, H. B. (2015). The role of oxygen vacancies and their location in the magnetic properties of Ce1-xCuxO2-δ nanorods. Physical Chemistry Chemical Physics, 17( 5), 3072-3080. doi:10.1039/c4cp04879b
    • NLM

      Bernardi MIB, Mesquita A, Béron F, Pirota KR, Zevallos AO, Doriguetto AC, Carvalho HB. The role of oxygen vacancies and their location in the magnetic properties of Ce1-xCuxO2-δ nanorods [Internet]. Physical Chemistry Chemical Physics. 2015 ; 17( 5): 3072-3080.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1039/c4cp04879b
    • Vancouver

      Bernardi MIB, Mesquita A, Béron F, Pirota KR, Zevallos AO, Doriguetto AC, Carvalho HB. The role of oxygen vacancies and their location in the magnetic properties of Ce1-xCuxO2-δ nanorods [Internet]. Physical Chemistry Chemical Physics. 2015 ; 17( 5): 3072-3080.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1039/c4cp04879b
  • Source: BMC Systems Biology. Unidades: IQ, IME, BIOINFORMÁTICA

    Subjects: EXPRESSÃO GÊNICA, BIOQUÍMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology, v. 1, n. 39, p. 1-11, 2007Tradução . . Disponível em: https://doi.org/10.1186/1752-0509-1-39. Acesso em: 08 nov. 2024.
    • APA

      Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Yamaguchi, R., Miyano, S., Sogayar, M. C., & Ferreira, C. E. (2007). Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology, 1( 39), 1-11. doi:10.1186/1752-0509-1-39
    • NLM

      Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, Sogayar MC, Ferreira CE. Modeling gene expression regulatory networks with the sparse vector autoregressive model [Internet]. BMC Systems Biology. 2007 ; 1( 39): 1-11.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1186/1752-0509-1-39
    • Vancouver

      Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, Sogayar MC, Ferreira CE. Modeling gene expression regulatory networks with the sparse vector autoregressive model [Internet]. BMC Systems Biology. 2007 ; 1( 39): 1-11.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1186/1752-0509-1-39
  • Source: Bioinformatics. Unidades: IME, IQ, BIOINFORMÁTICA

    Subjects: EXPRESSÃO GÊNICA, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics, v. 23, n. 13, p. 1623-1630, 2007Tradução . . Disponível em: https://doi.org/10.1093/bioinformatics/btm151. Acesso em: 08 nov. 2024.
    • APA

      Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Morettin, P. A., Sogayar, M. C., & Ferreira, C. E. (2007). Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics, 23( 13), 1623-1630. doi:10.1093/bioinformatics/btm151
    • NLM

      Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method [Internet]. Bioinformatics. 2007 ; 23( 13): 1623-1630.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1093/bioinformatics/btm151
    • Vancouver

      Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method [Internet]. Bioinformatics. 2007 ; 23( 13): 1623-1630.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1093/bioinformatics/btm151
  • Source: Brazilian Journal of Medical and Biological Research. Unidades: IME, IQ, BIOINFORMÁTICA

    Subjects: BIOINFORMÁTICA, BIOQUÍMICA, GENOMAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. The GATO gene annotation tool for research laboratories. Brazilian Journal of Medical and Biological Research, v. 38, n. 11, p. 1571-1574, 2005Tradução . . Disponível em: https://doi.org/10.1590/S0100-879X2005001100002. Acesso em: 08 nov. 2024.
    • APA

      Fujita, A., Massirer, K. B., Durham, A. M., Ferreira, C. E., & Sogayar, M. C. (2005). The GATO gene annotation tool for research laboratories. Brazilian Journal of Medical and Biological Research, 38( 11), 1571-1574. doi:10.1590/S0100-879X2005001100002
    • NLM

      Fujita A, Massirer KB, Durham AM, Ferreira CE, Sogayar MC. The GATO gene annotation tool for research laboratories [Internet]. Brazilian Journal of Medical and Biological Research. 2005 ; 38( 11): 1571-1574.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1590/S0100-879X2005001100002
    • Vancouver

      Fujita A, Massirer KB, Durham AM, Ferreira CE, Sogayar MC. The GATO gene annotation tool for research laboratories [Internet]. Brazilian Journal of Medical and Biological Research. 2005 ; 38( 11): 1571-1574.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1590/S0100-879X2005001100002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024