Subjects: APRENDIZADO COMPUTACIONAL, ESPECTROSCOPIA INFRAVERMELHA, MODELOS MATEMÁTICOS, REDES NEURAIS, SOLOS
ABNT
NG, Wartini et al. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, v. 6, n. 2, p. 565-578, 2020Tradução . . Disponível em: https://doi.org/10.5194/soil-6-565-2020. Acesso em: 15 nov. 2024.APA
Ng, W., Minasny, B., Mendes, W. de S., & Demattê, J. A. M. (2020). The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 6( 2), 565-578. doi:10.5194/soil-6-565-2020NLM
Ng W, Minasny B, Mendes W de S, Demattê JAM. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data [Internet]. Soil. 2020 ; 6( 2): 565-578.[citado 2024 nov. 15 ] Available from: https://doi.org/10.5194/soil-6-565-2020Vancouver
Ng W, Minasny B, Mendes W de S, Demattê JAM. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data [Internet]. Soil. 2020 ; 6( 2): 565-578.[citado 2024 nov. 15 ] Available from: https://doi.org/10.5194/soil-6-565-2020