The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data (2020)
- Authors:
- USP affiliated authors: DEMATTE, JOSE ALEXANDRE MELO - ESALQ ; MENDES, WANDERSON DE SOUSA - ESALQ
- Unidade: ESALQ
- DOI: 10.5194/soil-6-565-2020
- Subjects: APRENDIZADO COMPUTACIONAL; ESPECTROSCOPIA INFRAVERMELHA; MODELOS MATEMÁTICOS; REDES NEURAIS; SOLOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
NG, Wartini et al. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, v. 6, n. 2, p. 565-578, 2020Tradução . . Disponível em: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf. Acesso em: 12 fev. 2026. -
APA
Ng, W., Minasny, B., Mendes, W. de S., & Demattê, J. A. M. (2020). The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 6( 2), 565-578. doi:10.5194/soil-6-565-2020 -
NLM
Ng W, Minasny B, Mendes W de S, Demattê JAM. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data [Internet]. Soil. 2020 ; 6( 2): 565-578.[citado 2026 fev. 12 ] Available from: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf -
Vancouver
Ng W, Minasny B, Mendes W de S, Demattê JAM. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data [Internet]. Soil. 2020 ; 6( 2): 565-578.[citado 2026 fev. 12 ] Available from: https://soil.copernicus.org/articles/6/565/2020/soil-6-565-2020.pdf - Estimation of effective calibration sample size using visible near infrared spectroscopy: deep learning vs machine learning
- Geotechnologies applied in digital soil mapping
- A novel framework to estimate soil mineralogy using soil spectroscopy
- Geostatistics or machine learning for mapping soil attributes and agricultural practices
- Integration of multispectral and hyperspectral data to map magnetic susceptibility and soil attributes at depth: a novel framework
- Determination of soil attribute contents by means of reflected electromagnetic energy
- Assessment of sugarcane harvesting residue effects on soil spectral behavior
- Evaluation of tropical soils through ground and orbital sensors
- Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils
- Caracterização e espacialização do meio físico, como base para o planejamento do uso da terra
Informações sobre o DOI: 10.5194/soil-6-565-2020 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3013109-The influence of ... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
