Filtros : "ÁLGEBRAS DE LIE" "Rússia (antiga URSS) - Federação Russa" Removidos: "Psicologia" "ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS" "ICB-BMI" Limpar

Filtros



Refine with date range


  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SHESTAKOV, Ivan P e RASSKAZOVA, Marina. New examples of binary Lie superalgebras and algebras. Algebra and Logic, v. 60, n. 6, p. 366-374, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10469-022-09663-1. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., Shestakov, I. P., & Rasskazova, M. (2022). New examples of binary Lie superalgebras and algebras. Algebra and Logic, 60( 6), 366-374. doi:10.1007/s10469-022-09663-1
    • NLM

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
    • Vancouver

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
  • Source: Archiv der Mathematik. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikhail. Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, v. 116, n. 4, p. 413-421, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00013-020-01567-9. Acesso em: 01 nov. 2024.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Eventually non-decreasing codimensions of *-identities. Archiv der Mathematik, 116( 4), 413-421. doi:10.1007/s00013-020-01567-9
    • NLM

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s00013-020-01567-9
    • Vancouver

      Shestakov IP, Zaicev M. Eventually non-decreasing codimensions of *-identities [Internet]. Archiv der Mathematik. 2021 ; 116( 4): 413-421.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s00013-020-01567-9
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e SOKOLOV, Vladimir V. Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, v. 20, n. art. 2150050, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1142/S021949882150050X. Acesso em: 01 nov. 2024.
    • APA

      Shestakov, I. P., & Sokolov, V. V. (2021). Multi-component generalizations of mKdV equation and nonassociative algebraic structures. Journal of Algebra and Its Applications, 20( art. 2150050), 1-24. doi:10.1142/S021949882150050X
    • NLM

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/S021949882150050X
    • Vancouver

      Shestakov IP, Sokolov VV. Multi-component generalizations of mKdV equation and nonassociative algebraic structures [Internet]. Journal of Algebra and Its Applications. 2021 ; 20( art. 2150050): 1-24.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/S021949882150050X
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS ALGÉBRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, M. N. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, v. 56, n. 4, p. 269-280, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10469-017-9448-3. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., & Rasskazova, M. N. (2017). Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, 56( 4), 269-280. doi:10.1007/s10469-017-9448-3
    • NLM

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
    • Vancouver

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, v. 23, n. 2, p. 407-431, 2013Tradução . . Disponível em: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf. Acesso em: 01 nov. 2024.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, 23( 2), 407-431. Recuperado de https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • NLM

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2024 nov. 01 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2024 nov. 01 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, Marina e SICILIANO, Salvatore. Normal enveloping algebras. Pacific Journal of Mathematics, v. 257, n. 1, p. 131-141, 2012Tradução . . Disponível em: https://doi.org/10.2140/pjm.2012.257.131. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., Rasskazova, M., & Siciliano, S. (2012). Normal enveloping algebras. Pacific Journal of Mathematics, 257( 1), 131-141. doi:10.2140/pjm.2012.257.131
    • NLM

      Grichkov A, Rasskazova M, Siciliano S. Normal enveloping algebras [Internet]. Pacific Journal of Mathematics. 2012 ; 257( 1): 131-141.[citado 2024 nov. 01 ] Available from: https://doi.org/10.2140/pjm.2012.257.131
    • Vancouver

      Grichkov A, Rasskazova M, Siciliano S. Normal enveloping algebras [Internet]. Pacific Journal of Mathematics. 2012 ; 257( 1): 131-141.[citado 2024 nov. 01 ] Available from: https://doi.org/10.2140/pjm.2012.257.131
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, v. 19, n. 4, p. 697-724, 2009Tradução . . Disponível em: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf. Acesso em: 01 nov. 2024.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2009). Examples of Self-Iterating Lie Algebras, 2. Journal of Lie Theory, 19( 4), 697-724. Recuperado de https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • NLM

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2024 nov. 01 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. Examples of Self-Iterating Lie Algebras, 2 [Internet]. Journal of Lie Theory. 2009 ; 19( 4): 697-724.[citado 2024 nov. 01 ] Available from: https://www.heldermann-verlag.de/jlt/jlt19/petrola2e.pdf
  • Source: Journal of Nonlinear Mathematical Physics. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, V. N. e OBERLACK, M. e GRICHKOV, Alexandre. Lie algebra methods for the applications to the statistical theory of turbulence. Journal of Nonlinear Mathematical Physics, v. 15, n. 2, p. 227-251, 2008Tradução . . Disponível em: https://doi.org/10.2991/jnmp.2008.15.2.9. Acesso em: 01 nov. 2024.
    • APA

      Grebenev, V. N., Oberlack, M., & Grichkov, A. (2008). Lie algebra methods for the applications to the statistical theory of turbulence. Journal of Nonlinear Mathematical Physics, 15( 2), 227-251. doi:10.2991/jnmp.2008.15.2.9
    • NLM

      Grebenev VN, Oberlack M, Grichkov A. Lie algebra methods for the applications to the statistical theory of turbulence [Internet]. Journal of Nonlinear Mathematical Physics. 2008 ; 15( 2): 227-251.[citado 2024 nov. 01 ] Available from: https://doi.org/10.2991/jnmp.2008.15.2.9
    • Vancouver

      Grebenev VN, Oberlack M, Grichkov A. Lie algebra methods for the applications to the statistical theory of turbulence [Internet]. Journal of Nonlinear Mathematical Physics. 2008 ; 15( 2): 227-251.[citado 2024 nov. 01 ] Available from: https://doi.org/10.2991/jnmp.2008.15.2.9
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMANOVSKII, N. S e SHESTAKOV, Ivan P. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, v. 47, n. 4, p. 269-278, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10469-008-9018-9. Acesso em: 01 nov. 2024.
    • APA

      Romanovskii, N. S., & Shestakov, I. P. (2008). Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra. Algebra and Logic, 47( 4), 269-278. doi:10.1007/s10469-008-9018-9
    • NLM

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
    • Vancouver

      Romanovskii NS, Shestakov IP. Noetherianness of wreath products of Abelian Lie algebras with respect to equations of universal enveloping algebra [Internet]. Algebra and Logic. 2008 ; 47( 4): 269-278.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-008-9018-9
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, VARIEDADES ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e SHESTAKOV, Ivan P. The Chevalley and Costant theorems for Mal’tsev algebras. Algebra and Logic, v. 46, n. 5, p. 303-317, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10469-007-0031-1. Acesso em: 01 nov. 2024.
    • APA

      Zhelyabin, V. N., & Shestakov, I. P. (2007). The Chevalley and Costant theorems for Mal’tsev algebras. Algebra and Logic, 46( 5), 303-317. doi:10.1007/s10469-007-0031-1
    • NLM

      Zhelyabin VN, Shestakov IP. The Chevalley and Costant theorems for Mal’tsev algebras [Internet]. Algebra and Logic. 2007 ; 46( 5): 303-317.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-007-0031-1
    • Vancouver

      Zhelyabin VN, Shestakov IP. The Chevalley and Costant theorems for Mal’tsev algebras [Internet]. Algebra and Logic. 2007 ; 46( 5): 303-317.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10469-007-0031-1
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAHTURIN, Yuri A. e SHESTAKOV, Ivan P e ZAICEV, Mikhail V. Gradings on simple Jordan and Lie algebras. Journal of Algebra, v. 283, n. 2, p. 849-868, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2004.10.007. Acesso em: 01 nov. 2024.
    • APA

      Bahturin, Y. A., Shestakov, I. P., & Zaicev, M. V. (2005). Gradings on simple Jordan and Lie algebras. Journal of Algebra, 283( 2), 849-868. doi:10.1016/j.jalgebra.2004.10.007
    • NLM

      Bahturin YA, Shestakov IP, Zaicev MV. Gradings on simple Jordan and Lie algebras [Internet]. Journal of Algebra. 2005 ; 283( 2): 849-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2004.10.007
    • Vancouver

      Bahturin YA, Shestakov IP, Zaicev MV. Gradings on simple Jordan and Lie algebras [Internet]. Journal of Algebra. 2005 ; 283( 2): 849-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2004.10.007
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SHESTAKOV, Ivan P. Speciality of Lie-Jordan algebras. Journal of Algebra, v. 237, n. 2, p. 621-636, 2001Tradução . . Disponível em: https://doi.org/10.1006/jabr.2000.8612. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., & Shestakov, I. P. (2001). Speciality of Lie-Jordan algebras. Journal of Algebra, 237( 2), 621-636. doi:10.1006/jabr.2000.8612
    • NLM

      Grichkov A, Shestakov IP. Speciality of Lie-Jordan algebras [Internet]. Journal of Algebra. 2001 ; 237( 2): 621-636.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1006/jabr.2000.8612
    • Vancouver

      Grichkov A, Shestakov IP. Speciality of Lie-Jordan algebras [Internet]. Journal of Algebra. 2001 ; 237( 2): 621-636.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1006/jabr.2000.8612

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024