Subjects: PERMEABILIDADE DO SOLO, RESERVATÓRIOS, APRENDIZADO COMPUTACIONAL
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
REGINATO, Leonardo Fonseca e GIORIA, Rafael dos Santos e PINTO, Marcio Augusto Sampaio. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection. Energies, v. 16, n. 13, 2023Tradução . . Disponível em: https://doi.org/10.3390/en16134849. Acesso em: 10 nov. 2024.APA
Reginato, L. F., Gioria, R. dos S., & Pinto, M. A. S. (2023). Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection. Energies, 16( 13). doi:10.3390/en16134849NLM
Reginato LF, Gioria R dos S, Pinto MAS. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection [Internet]. Energies. 2023 ;16( 13):[citado 2024 nov. 10 ] Available from: https://doi.org/10.3390/en16134849Vancouver
Reginato LF, Gioria R dos S, Pinto MAS. Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection [Internet]. Energies. 2023 ;16( 13):[citado 2024 nov. 10 ] Available from: https://doi.org/10.3390/en16134849