Filtros : "ICMC-SMA" "Financiamento FCT" Removidos: "Indexado no Global Health" "1951" Limpar

Filtros



Refine with date range


  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos et al. Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, v. 56, n. 6, p. 7136-7169, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M161553X. Acesso em: 18 nov. 2024.
    • APA

      Andrade, P. D. S., Moreira dos Santos, E., Santos, M., & Tavares, H. (2024). Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, 56( 6), 7136-7169. doi:10.1137/23M161553X
    • NLM

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1137/23M161553X
    • Vancouver

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1137/23M161553X
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, TEORIA ESPECTRAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson et al. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, v. 62, n. 2, p. 1-38, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02386-2. Acesso em: 18 nov. 2024.
    • APA

      Moreira dos Santos, E., Nornberg, G., Schiera, D., & Tavares, H. (2023). Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calculus of Variations and Partial Differential Equations, 62( 2), 1-38. doi:10.1007/s00526-022-02386-2
    • NLM

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
    • Vancouver

      Moreira dos Santos E, Nornberg G, Schiera D, Tavares H. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications [Internet]. Calculus of Variations and Partial Differential Equations. 2023 ; 62( 2): 1-38.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00526-022-02386-2
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 18 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 18 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, v. 25, n. 5, p. 1821-1834, 2020Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020004. Acesso em: 18 nov. 2024.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, 25( 5), 1821-1834. doi:10.3934/dcdsb.2020004
    • NLM

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020004
    • Vancouver

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024