A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GRANDIS, Adriana et al. Scientific research on bioethanol in Brazil: history and prospects for sustainable biofuel. Sustainability, 2024Tradução . . Disponível em: https://doi.org/10.3390/su16104167. Acesso em: 09 nov. 2024.
APA
Grandis, A., Fortirer, J. da S., Pagliuso, D., & Buckeridge, M. (2024). Scientific research on bioethanol in Brazil: history and prospects for sustainable biofuel. Sustainability. doi:10.3390/su16104167
NLM
Grandis A, Fortirer J da S, Pagliuso D, Buckeridge M. Scientific research on bioethanol in Brazil: history and prospects for sustainable biofuel [Internet]. Sustainability. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/su16104167
Vancouver
Grandis A, Fortirer J da S, Pagliuso D, Buckeridge M. Scientific research on bioethanol in Brazil: history and prospects for sustainable biofuel [Internet]. Sustainability. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/su16104167
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FARIAS, Camila Novais et al. Air pollution during and after the COVID-19 pandemic in São Paulo. 2024, Anais.. Ouro Preto: Universidade Federal de Ouro Preto/UFOP, 2024. Disponível em: https://even3.blob.core.windows.net/anais/786256.pdf. Acesso em: 09 nov. 2024.
APA
Farias, C. N., Pagliuso, D., Grandis, A., Buckeridge, M., Netto, P. E. A., & Vasconcellos, P. de C. (2024). Air pollution during and after the COVID-19 pandemic in São Paulo. In Anais. Ouro Preto: Universidade Federal de Ouro Preto/UFOP. Recuperado de https://even3.blob.core.windows.net/anais/786256.pdf
NLM
Farias CN, Pagliuso D, Grandis A, Buckeridge M, Netto PEA, Vasconcellos P de C. Air pollution during and after the COVID-19 pandemic in São Paulo [Internet]. Anais. 2024 ;[citado 2024 nov. 09 ] Available from: https://even3.blob.core.windows.net/anais/786256.pdf
Vancouver
Farias CN, Pagliuso D, Grandis A, Buckeridge M, Netto PEA, Vasconcellos P de C. Air pollution during and after the COVID-19 pandemic in São Paulo [Internet]. Anais. 2024 ;[citado 2024 nov. 09 ] Available from: https://even3.blob.core.windows.net/anais/786256.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GRANDIS, Adriana et al. Role of cell wall polysaccharides in water distribution during seed imbibition of Hymenaea courbaril L. Plant Biology, 2024Tradução . . Disponível em: https://doi.org/10.1111/plb.13688. Acesso em: 09 nov. 2024.
APA
Grandis, A., Santos, H. P., Tonini, P. P., Salles, I. S., Peres, A. S. C., Carpita, N. C., & Buckeridge, M. (2024). Role of cell wall polysaccharides in water distribution during seed imbibition of Hymenaea courbaril L. Plant Biology. doi:10.1111/plb.13688
NLM
Grandis A, Santos HP, Tonini PP, Salles IS, Peres ASC, Carpita NC, Buckeridge M. Role of cell wall polysaccharides in water distribution during seed imbibition of Hymenaea courbaril L [Internet]. Plant Biology. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1111/plb.13688
Vancouver
Grandis A, Santos HP, Tonini PP, Salles IS, Peres ASC, Carpita NC, Buckeridge M. Role of cell wall polysaccharides in water distribution during seed imbibition of Hymenaea courbaril L [Internet]. Plant Biology. 2024 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1111/plb.13688
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BUCKERIDGE, Marcos. The glycomic code of the plant cell wall: how structure leads to function. Plant Cell Walls. Tradução . Boca Raton: , Universidade de São Paulo, 2023. . Disponível em: https://doi.org/10.1201/9781003178309-12. Acesso em: 09 nov. 2024.
APA
Buckeridge, M. (2023). The glycomic code of the plant cell wall: how structure leads to function. In Plant Cell Walls. Boca Raton: , Universidade de São Paulo. doi:10.1201/9781003178309-12
NLM
Buckeridge M. The glycomic code of the plant cell wall: how structure leads to function [Internet]. In: Plant Cell Walls. Boca Raton: , Universidade de São Paulo; 2023. [citado 2024 nov. 09 ] Available from: https://doi.org/10.1201/9781003178309-12
Vancouver
Buckeridge M. The glycomic code of the plant cell wall: how structure leads to function [Internet]. In: Plant Cell Walls. Boca Raton: , Universidade de São Paulo; 2023. [citado 2024 nov. 09 ] Available from: https://doi.org/10.1201/9781003178309-12
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GRANDIS, Adriana et al. Biotechnologies to improve sugarcane productivity in a climate change scenario. BioEnergy Research, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12155-023-10649-9. Acesso em: 09 nov. 2024.
APA
Grandis, A., Fortirer, J. S., Navarro, B. V., Oliveira, L. P. de, & Buckeridge, M. (2023). Biotechnologies to improve sugarcane productivity in a climate change scenario. BioEnergy Research. doi:10.1007/s12155-023-10649-9
NLM
Grandis A, Fortirer JS, Navarro BV, Oliveira LP de, Buckeridge M. Biotechnologies to improve sugarcane productivity in a climate change scenario [Internet]. BioEnergy Research. 2023 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-023-10649-9
Vancouver
Grandis A, Fortirer JS, Navarro BV, Oliveira LP de, Buckeridge M. Biotechnologies to improve sugarcane productivity in a climate change scenario [Internet]. BioEnergy Research. 2023 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-023-10649-9
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GARBELOTTI, Carolina Victal et al. Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms. Carbohydrate Polymers, v. 310, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2023.120694. Acesso em: 09 nov. 2024.
APA
Garbelotti, C. V., Grandis, A., Crevelin, E. J., Buckeridge, M., Moraes, L. A. B. de, & Ward, R. J. (2023). Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms. Carbohydrate Polymers, 310. doi:10.1016/j.carbpol.2023.120694
NLM
Garbelotti CV, Grandis A, Crevelin EJ, Buckeridge M, Moraes LAB de, Ward RJ. Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms [Internet]. Carbohydrate Polymers. 2023 ; 310[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.carbpol.2023.120694
Vancouver
Garbelotti CV, Grandis A, Crevelin EJ, Buckeridge M, Moraes LAB de, Ward RJ. Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms [Internet]. Carbohydrate Polymers. 2023 ; 310[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.carbpol.2023.120694
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LOCOSSELLI, Giuliano Maselli e BUCKERIDGE, Marcos. The science of urban trees to promote well-being. Trees, v. 37, p. 1–7, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00468-023-02389-2. Acesso em: 09 nov. 2024.
APA
Locosselli, G. M., & Buckeridge, M. (2023). The science of urban trees to promote well-being. Trees, 37, 1–7. doi:10.1007/s00468-023-02389-2
NLM
Locosselli GM, Buckeridge M. The science of urban trees to promote well-being [Internet]. Trees. 2023 ; 37 1–7.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00468-023-02389-2
Vancouver
Locosselli GM, Buckeridge M. The science of urban trees to promote well-being [Internet]. Trees. 2023 ; 37 1–7.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00468-023-02389-2
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SILVA, Jovanderson J. B e DE ABREU, Luís G. F e BUCKERIDGE, Marcos. Diurnal metabolism of energy-cane and sugarcane: a metabolomic and non-structural carbohydrate analysis. Industrial Crops and Products, v. 202, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.indcrop.2023.117056. Acesso em: 09 nov. 2024.
APA
Silva, J. J. B., De Abreu, L. G. F., & Buckeridge, M. (2023). Diurnal metabolism of energy-cane and sugarcane: a metabolomic and non-structural carbohydrate analysis. Industrial Crops and Products, 202. doi:10.1016/j.indcrop.2023.117056
NLM
Silva JJB, De Abreu LGF, Buckeridge M. Diurnal metabolism of energy-cane and sugarcane: a metabolomic and non-structural carbohydrate analysis [Internet]. Industrial Crops and Products. 2023 ; 202[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.indcrop.2023.117056
Vancouver
Silva JJB, De Abreu LGF, Buckeridge M. Diurnal metabolism of energy-cane and sugarcane: a metabolomic and non-structural carbohydrate analysis [Internet]. Industrial Crops and Products. 2023 ; 202[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.indcrop.2023.117056
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PAGLIUSO, Débora et al. Carbon allocation of Spirodela polyrhiza under boron toxicity. Frontiers in Plant Science, v. 14, 2023Tradução . . Disponível em: https://doi.org/10.3389/fpls.2023.1208888. Acesso em: 09 nov. 2024.
APA
Pagliuso, D., Pereira, J. P. de J., Ulrich, J. C., Cotrim, M., Buckeridge, M., & Grandis, A. (2023). Carbon allocation of Spirodela polyrhiza under boron toxicity. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1208888
NLM
Pagliuso D, Pereira JP de J, Ulrich JC, Cotrim M, Buckeridge M, Grandis A. Carbon allocation of Spirodela polyrhiza under boron toxicity [Internet]. Frontiers in Plant Science. 2023 ; 14[citado 2024 nov. 09 ] Available from: https://doi.org/10.3389/fpls.2023.1208888
Vancouver
Pagliuso D, Pereira JP de J, Ulrich JC, Cotrim M, Buckeridge M, Grandis A. Carbon allocation of Spirodela polyrhiza under boron toxicity [Internet]. Frontiers in Plant Science. 2023 ; 14[citado 2024 nov. 09 ] Available from: https://doi.org/10.3389/fpls.2023.1208888
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS, Wanderley D. dos et al. Natural lignin modulators improve lignocellulose saccharification of field-grown sugarcane, soybean, and brachiaria. Biomass and Bioenergy, v. 168, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.biombioe.2022.106684. Acesso em: 09 nov. 2024.
APA
Santos, W. D. dos, Leite, D. C. C., Polizeli, M. D. L. T. D. M., & Buckeridge, M. (2023). Natural lignin modulators improve lignocellulose saccharification of field-grown sugarcane, soybean, and brachiaria. Biomass and Bioenergy, 168. doi:10.1016/j.biombioe.2022.106684
NLM
Santos WD dos, Leite DCC, Polizeli MDLTDM, Buckeridge M. Natural lignin modulators improve lignocellulose saccharification of field-grown sugarcane, soybean, and brachiaria [Internet]. Biomass and Bioenergy. 2023 ; 168[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.biombioe.2022.106684
Vancouver
Santos WD dos, Leite DCC, Polizeli MDLTDM, Buckeridge M. Natural lignin modulators improve lignocellulose saccharification of field-grown sugarcane, soybean, and brachiaria [Internet]. Biomass and Bioenergy. 2023 ; 168[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.biombioe.2022.106684
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BARRETO, Matheus Quintana et al. Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity. Enzyme and Microbial Technology, v. 166, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.enzmictec.2023.110230. Acesso em: 09 nov. 2024.
APA
Barreto, M. Q., Garbelotti, C. V., Soares, J. de M., Grandis, A., Buckeridge, M., Leone, F. de A., & Ward, R. J. (2023). Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity. Enzyme and Microbial Technology, 166. doi:10.1016/j.enzmictec.2023.110230
NLM
Barreto MQ, Garbelotti CV, Soares J de M, Grandis A, Buckeridge M, Leone F de A, Ward RJ. Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity [Internet]. Enzyme and Microbial Technology. 2023 ; 166[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.enzmictec.2023.110230
Vancouver
Barreto MQ, Garbelotti CV, Soares J de M, Grandis A, Buckeridge M, Leone F de A, Ward RJ. Xylose isomerase from Piromyces sp. E2 is a promiscuous enzyme with epimerase activity [Internet]. Enzyme and Microbial Technology. 2023 ; 166[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.enzmictec.2023.110230
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALNOCH, Robson C et al. Biochemical characterization of an endoglucanase GH7 from thermophile thermothielavioides terrestris expressed on Aspergillus nidulans. Catalysts, v. 13, n. 3, 2023Tradução . . Disponível em: https://doi.org/10.3390/catal13030582. Acesso em: 09 nov. 2024.
APA
Alnoch, R. C., Salgado, J. C. dos S., Alves, G. S., Andrades, D. de, Meleiro, L. P., Segato, F., et al. (2023). Biochemical characterization of an endoglucanase GH7 from thermophile thermothielavioides terrestris expressed on Aspergillus nidulans. Catalysts, 13( 3). doi:10.3390/catal13030582
NLM
Alnoch RC, Salgado JC dos S, Alves GS, Andrades D de, Meleiro LP, Segato F, Berto GL, Ward RJ, Buckeridge M, Polizeli M de LTM. Biochemical characterization of an endoglucanase GH7 from thermophile thermothielavioides terrestris expressed on Aspergillus nidulans [Internet]. Catalysts. 2023 ; 13( 3):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/catal13030582
Vancouver
Alnoch RC, Salgado JC dos S, Alves GS, Andrades D de, Meleiro LP, Segato F, Berto GL, Ward RJ, Buckeridge M, Polizeli M de LTM. Biochemical characterization of an endoglucanase GH7 from thermophile thermothielavioides terrestris expressed on Aspergillus nidulans [Internet]. Catalysts. 2023 ; 13( 3):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/catal13030582
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CONTATO, Alex Graça et al. Trichoderma longibrachiatum and thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties. Biotechnology Letters, v. 45, p. 1093–1102, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10529-023-03395-7. Acesso em: 09 nov. 2024.
APA
Contato, A. G., Nogueira, K. M. V., Buckeridge, M., Silva, R. do N., & Polizeli, M. D. L. T. D. M. (2023). Trichoderma longibrachiatum and thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties. Biotechnology Letters, 45, 1093–1102. doi:10.1007/s10529-023-03395-7
NLM
Contato AG, Nogueira KMV, Buckeridge M, Silva R do N, Polizeli MDLTDM. Trichoderma longibrachiatum and thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties [Internet]. Biotechnology Letters. 2023 ; 45 1093–1102.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10529-023-03395-7
Vancouver
Contato AG, Nogueira KMV, Buckeridge M, Silva R do N, Polizeli MDLTDM. Trichoderma longibrachiatum and thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties [Internet]. Biotechnology Letters. 2023 ; 45 1093–1102.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s10529-023-03395-7
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA, Artur André e BUCKERIDGE, Marcos e HIRATA JR., Roberto. Detecting tree and wire entanglements with deep learning. Trees, v. 37, n. 1, p. 147-159, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00468-022-02305-0. Acesso em: 09 nov. 2024.
APA
Oliveira, A. A., Buckeridge, M., & Hirata Jr., R. (2023). Detecting tree and wire entanglements with deep learning. Trees, 37( 1), 147-159. doi:10.1007/s00468-022-02305-0
NLM
Oliveira AA, Buckeridge M, Hirata Jr. R. Detecting tree and wire entanglements with deep learning [Internet]. Trees. 2023 ; 37( 1): 147-159.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00468-022-02305-0
Vancouver
Oliveira AA, Buckeridge M, Hirata Jr. R. Detecting tree and wire entanglements with deep learning [Internet]. Trees. 2023 ; 37( 1): 147-159.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00468-022-02305-0
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CONTATO, Alex Graça et al. Comparison of trichoderma longibrachiatum xyloglucanase production using tamarind (tamarindus indica) and jatoba (hymenaea courbaril) seeds: factorial design and immobilization on ionic supports. Fermentation, v. 8, n. 10, 2022Tradução . . Disponível em: https://doi.org/10.3390/fermentation8100510. Acesso em: 09 nov. 2024.
APA
Contato, A. G., Vici, A. C., Pinheiro, V. E., Oliveira, T. B. de, Freitas, E. N. de, Aranha, G. M., et al. (2022). Comparison of trichoderma longibrachiatum xyloglucanase production using tamarind (tamarindus indica) and jatoba (hymenaea courbaril) seeds: factorial design and immobilization on ionic supports. Fermentation, 8( 10). doi:10.3390/fermentation8100510
NLM
Contato AG, Vici AC, Pinheiro VE, Oliveira TB de, Freitas EN de, Aranha GM, Valvassora Junior ALA, Rechia CGV, Buckeridge M, Polizeli MDLTDM. Comparison of trichoderma longibrachiatum xyloglucanase production using tamarind (tamarindus indica) and jatoba (hymenaea courbaril) seeds: factorial design and immobilization on ionic supports [Internet]. Fermentation. 2022 ; 8( 10):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/fermentation8100510
Vancouver
Contato AG, Vici AC, Pinheiro VE, Oliveira TB de, Freitas EN de, Aranha GM, Valvassora Junior ALA, Rechia CGV, Buckeridge M, Polizeli MDLTDM. Comparison of trichoderma longibrachiatum xyloglucanase production using tamarind (tamarindus indica) and jatoba (hymenaea courbaril) seeds: factorial design and immobilization on ionic supports [Internet]. Fermentation. 2022 ; 8( 10):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/fermentation8100510
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA, Lauana P. de et al. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Scientific Reports, v. 12, 2022Tradução . . Disponível em: https://doi.org/10.1038/s41598-022-11508-x. Acesso em: 09 nov. 2024.
APA
Oliveira, L. P. de, Navarro, B. V., Pereira, J. P. de J., Lopes, A. R., Martins, M. C. M., Riaño-Pachón, D. M., & Buckeridge, M. (2022). Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Scientific Reports, 12. doi:10.1038/s41598-022-11508-x
NLM
Oliveira LP de, Navarro BV, Pereira JP de J, Lopes AR, Martins MCM, Riaño-Pachón DM, Buckeridge M. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane [Internet]. Scientific Reports. 2022 ; 12[citado 2024 nov. 09 ] Available from: https://doi.org/10.1038/s41598-022-11508-x
Vancouver
Oliveira LP de, Navarro BV, Pereira JP de J, Lopes AR, Martins MCM, Riaño-Pachón DM, Buckeridge M. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane [Internet]. Scientific Reports. 2022 ; 12[citado 2024 nov. 09 ] Available from: https://doi.org/10.1038/s41598-022-11508-x
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PAGLIUSO, Débora et al. NDP-Sugar Pathways overview of Spirodela polyrhiza and their relevance for bioenergy and biorefinery. BioEnergy Research, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12155-021-10355-4. Acesso em: 09 nov. 2024.
APA
Pagliuso, D., Navarro, B. V., Grandis, A., Zerillo, M. M., Lam, E., & Buckeridge, M. (2022). NDP-Sugar Pathways overview of Spirodela polyrhiza and their relevance for bioenergy and biorefinery. BioEnergy Research. doi:10.1007/s12155-021-10355-4
NLM
Pagliuso D, Navarro BV, Grandis A, Zerillo MM, Lam E, Buckeridge M. NDP-Sugar Pathways overview of Spirodela polyrhiza and their relevance for bioenergy and biorefinery [Internet]. BioEnergy Research. 2022 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-021-10355-4
Vancouver
Pagliuso D, Navarro BV, Grandis A, Zerillo MM, Lam E, Buckeridge M. NDP-Sugar Pathways overview of Spirodela polyrhiza and their relevance for bioenergy and biorefinery [Internet]. BioEnergy Research. 2022 ;[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-021-10355-4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALNOCH, Robson C. et al. Immobilization and application of the recombinant xylanase GH10 of Malbranchea pulchella in the production of xylooligosaccharides from hydrothermal liquor of the Eucalyptus (Eucalyptus grandis) wood chips. International Journal of Molecular Sciences, v. 23 , n. 21, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.3390/ijms232113329. Acesso em: 09 nov. 2024.
APA
Alnoch, R. C., Alves, G. S., Salgado, J. C. dos S., Andrades, D. de, Freitas, E. N. de, Nogueira, K. M. V., et al. (2022). Immobilization and application of the recombinant xylanase GH10 of Malbranchea pulchella in the production of xylooligosaccharides from hydrothermal liquor of the Eucalyptus (Eucalyptus grandis) wood chips. International Journal of Molecular Sciences, 23 ( 21), 1-18. doi:10.3390/ijms232113329
NLM
Alnoch RC, Alves GS, Salgado JC dos S, Andrades D de, Freitas EN de, Nogueira KMV, Vici AC, Oliveira DP, Carvalho Junior VP, Silva R do N, Buckeridge M, Michelin M, Teixeira JA, Polizeli MDLTDM. Immobilization and application of the recombinant xylanase GH10 of Malbranchea pulchella in the production of xylooligosaccharides from hydrothermal liquor of the Eucalyptus (Eucalyptus grandis) wood chips [Internet]. International Journal of Molecular Sciences. 2022 ; 23 ( 21): 1-18.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/ijms232113329
Vancouver
Alnoch RC, Alves GS, Salgado JC dos S, Andrades D de, Freitas EN de, Nogueira KMV, Vici AC, Oliveira DP, Carvalho Junior VP, Silva R do N, Buckeridge M, Michelin M, Teixeira JA, Polizeli MDLTDM. Immobilization and application of the recombinant xylanase GH10 of Malbranchea pulchella in the production of xylooligosaccharides from hydrothermal liquor of the Eucalyptus (Eucalyptus grandis) wood chips [Internet]. International Journal of Molecular Sciences. 2022 ; 23 ( 21): 1-18.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/ijms232113329
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CARNEIRO, Lara Aparecida Buffoni de Campos et al. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli. Carbohydrate Polymers, v. 284, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2022.119150. Acesso em: 09 nov. 2024.
APA
Carneiro, L. A. B. de C., Fuzo, C. A., Meleiro, L. P., Carli, S., Barreto, M. Q., Lourenzoni, M. R., et al. (2022). Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli. Carbohydrate Polymers, 284. doi:10.1016/j.carbpol.2022.119150
NLM
Carneiro LAB de C, Fuzo CA, Meleiro LP, Carli S, Barreto MQ, Lourenzoni MR, Buckeridge M, Ward RJ. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli [Internet]. Carbohydrate Polymers. 2022 ; 284[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.carbpol.2022.119150
Vancouver
Carneiro LAB de C, Fuzo CA, Meleiro LP, Carli S, Barreto MQ, Lourenzoni MR, Buckeridge M, Ward RJ. Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli [Internet]. Carbohydrate Polymers. 2022 ; 284[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.carbpol.2022.119150
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NAVARRO, Bruno V et al. Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential. Plant Cell, Tissue and Organ Culture, v. 148, p. 81-93, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11240-021-02166-4. Acesso em: 09 nov. 2024.
APA
Navarro, B. V., Elbl, P., Oliveira, L. F. de, Piovezani, A. R., Santos, A. L. W. dos, Souza, D. T. de, et al. (2022). Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential. Plant Cell, Tissue and Organ Culture, 148, 81-93. doi:10.1007/s11240-021-02166-4
NLM
Navarro BV, Elbl P, Oliveira LF de, Piovezani AR, Santos ALW dos, Souza DT de, Demarco D, Buckeridge M, Floh EIS. Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential [Internet]. Plant Cell, Tissue and Organ Culture. 2022 ; 148 81-93.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11240-021-02166-4
Vancouver
Navarro BV, Elbl P, Oliveira LF de, Piovezani AR, Santos ALW dos, Souza DT de, Demarco D, Buckeridge M, Floh EIS. Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential [Internet]. Plant Cell, Tissue and Organ Culture. 2022 ; 148 81-93.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11240-021-02166-4