Filtros : "Argentina" "GOLDSCHMIDT, HECTOR ALFREDO MERKLEN" Removidos: "FRANCO, DOUGLAS WAGNER" "Porto Rico" "Financiamento FCT" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e MERKLEN GOLDSCHMIDT, Hector Alfredo e PLATZECK, Maria I. The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras. Communications in Algebra, v. 28, n. 3, p. 1387-1404, 2000Tradução . . Disponível em: https://doi.org/10.1080/00927870008826901. Acesso em: 04 nov. 2024.
    • APA

      Marcos, E. do N., Merklen Goldschmidt, H. A., & Platzeck, M. I. (2000). The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras. Communications in Algebra, 28( 3), 1387-1404. doi:10.1080/00927870008826901
    • NLM

      Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras [Internet]. Communications in Algebra. 2000 ; 28( 3): 1387-1404.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/00927870008826901
    • Vancouver

      Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras [Internet]. Communications in Algebra. 2000 ; 28( 3): 1387-1404.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/00927870008826901
  • Unidade: IME

    Subjects: ÁLGEBRA, TEORIA DA REPRESENTAÇÃO

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e MERKLEN GOLDSCHMIDT, Hector Alfredo e PLATZECK, Maria I. The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/a20abef8-aaa1-42a6-9a2c-974bf626ba54/1048375.pdf. Acesso em: 04 nov. 2024. , 1999
    • APA

      Marcos, E. do N., Merklen Goldschmidt, H. A., & Platzeck, M. I. (1999). The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/a20abef8-aaa1-42a6-9a2c-974bf626ba54/1048375.pdf
    • NLM

      Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras [Internet]. 1999 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/a20abef8-aaa1-42a6-9a2c-974bf626ba54/1048375.pdf
    • Vancouver

      Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras [Internet]. 1999 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/a20abef8-aaa1-42a6-9a2c-974bf626ba54/1048375.pdf
  • Source: Tsukuba Journal of Mathematics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COELHO, Flávio Ulhoa et al. Modules of infinite projective dimension over algebras whose idempotent ideals are projective. Tsukuba Journal of Mathematics, v. 21, n. 2, p. 345-359, 1997Tradução . . Disponível em: https://doi.org/10.21099/tkbjm/1496163246. Acesso em: 04 nov. 2024.
    • APA

      Coelho, F. U., Marcos, E. do N., Merklen Goldschmidt, H. A., & Platzeck, M. I. (1997). Modules of infinite projective dimension over algebras whose idempotent ideals are projective. Tsukuba Journal of Mathematics, 21( 2), 345-359. doi:10.21099/tkbjm/1496163246
    • NLM

      Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective [Internet]. Tsukuba Journal of Mathematics. 1997 ; 21( 2): 345-359.[citado 2024 nov. 04 ] Available from: https://doi.org/10.21099/tkbjm/1496163246
    • Vancouver

      Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective [Internet]. Tsukuba Journal of Mathematics. 1997 ; 21( 2): 345-359.[citado 2024 nov. 04 ] Available from: https://doi.org/10.21099/tkbjm/1496163246
  • Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COELHO, Flávio Ulhoa et al. Modules of infinite projective dimension over algebras whose idempotent ideals are projective. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/2ed2ff51-11e8-4dd4-8337-92fc78a85f3c/888490.pdf. Acesso em: 04 nov. 2024. , 1995
    • APA

      Coelho, F. U., Marcos, E. do N., Merklen Goldschmidt, H. A., & Platzeck, M. I. (1995). Modules of infinite projective dimension over algebras whose idempotent ideals are projective. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/2ed2ff51-11e8-4dd4-8337-92fc78a85f3c/888490.pdf
    • NLM

      Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective [Internet]. 1995 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/2ed2ff51-11e8-4dd4-8337-92fc78a85f3c/888490.pdf
    • Vancouver

      Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective [Internet]. 1995 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/2ed2ff51-11e8-4dd4-8337-92fc78a85f3c/888490.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024