Modules of infinite projective dimension over algebras whose idempotent ideals are projective (1995)
- Authors:
- USP affiliated authors: GOLDSCHMIDT, HECTOR ALFREDO MERKLEN - IME ; MARCOS, EDUARDO DO NASCIMENTO - IME ; COELHO, FLAVIO ULHOA - IME
- Unidade: IME
- Assunto: TEORIA DA REPRESENTAÇÃO
- Language: Inglês
- Imprenta:
-
ABNT
COELHO, Flávio Ulhoa et al. Modules of infinite projective dimension over algebras whose idempotent ideals are projective. . São Paulo: IME-USP. . Acesso em: 23 jan. 2026. , 1995 -
APA
Coelho, F. U., Marcos, E. do N., Merklen Goldschmidt, H. A., & Platzeck, M. I. (1995). Modules of infinite projective dimension over algebras whose idempotent ideals are projective. São Paulo: IME-USP. -
NLM
Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective. 1995 ;[citado 2026 jan. 23 ] -
Vancouver
Coelho FU, Marcos E do N, Merklen Goldschmidt HA, Platzeck MI. Modules of infinite projective dimension over algebras whose idempotent ideals are projective. 1995 ;[citado 2026 jan. 23 ] - Module categories with infinite radical square zero are of finite type
- Module categories with infinite radical cube zero
- Domestic semiregular branch enlargements of tame cancealed algebras
- Module categories with infinite radical square zero are of finite type
- Module categories with infinite radical cube zero
- Module categories with infinite radical cube zero
- Domestic semiregular branch enlargements of tame concealed algebras
- Standardly stratified split and lower triangular algebras
- Indecomposables in derived categories of skewed-gentle algebras
- The Grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
