Filtros : "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Journal of Singularities. Conference titles: International Workshop on Real and Complex Singularities. Unidade: IME

    Subjects: ANÁLISE GLOBAL, TEORIA DAS SINGULARIDADES, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e SOTOMAYOR, Jorge e SPINDOLA, Flausino Lucas Neves. Axiumbilic singular points on surfaces immersed in R^4 and their generic bifurcations. Journal of Singularities. Cambridge, MA: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.5427/jsing.2014.10h. Acesso em: 19 fev. 2026. , 2014
    • APA

      Garcia, R., Sotomayor, J., & Spindola, F. L. N. (2014). Axiumbilic singular points on surfaces immersed in R^4 and their generic bifurcations. Journal of Singularities. Cambridge, MA: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.5427/jsing.2014.10h
    • NLM

      Garcia R, Sotomayor J, Spindola FLN. Axiumbilic singular points on surfaces immersed in R^4 and their generic bifurcations [Internet]. Journal of Singularities. 2014 ; 10 124-146.[citado 2026 fev. 19 ] Available from: https://doi.org/10.5427/jsing.2014.10h
    • Vancouver

      Garcia R, Sotomayor J, Spindola FLN. Axiumbilic singular points on surfaces immersed in R^4 and their generic bifurcations [Internet]. Journal of Singularities. 2014 ; 10 124-146.[citado 2026 fev. 19 ] Available from: https://doi.org/10.5427/jsing.2014.10h
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: IME

    Subjects: FOLHEAÇÕES, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL, TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Débora Lopes da e SOTOMAYOR, Jorge e GARCIA, Ronaldo. Umbilic singularities and lines of curvature on ellipsoids of ℝ4. Bulletin of the Brazilian Mathematical Society, v. 45, n. 3, p. 453-483, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00574-014-0058-6. Acesso em: 19 fev. 2026.
    • APA

      Silva, D. L. da, Sotomayor, J., & Garcia, R. (2014). Umbilic singularities and lines of curvature on ellipsoids of ℝ4. Bulletin of the Brazilian Mathematical Society, 45( 3), 453-483. doi:10.1007/s00574-014-0058-6
    • NLM

      Silva DL da, Sotomayor J, Garcia R. Umbilic singularities and lines of curvature on ellipsoids of ℝ4 [Internet]. Bulletin of the Brazilian Mathematical Society. 2014 ; 45( 3): 453-483.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00574-014-0058-6
    • Vancouver

      Silva DL da, Sotomayor J, Garcia R. Umbilic singularities and lines of curvature on ellipsoids of ℝ4 [Internet]. Bulletin of the Brazilian Mathematical Society. 2014 ; 45( 3): 453-483.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00574-014-0058-6
  • Source: Qualitative Theory of Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PESSOA, Claudio e SOTOMAYOR, Jorge. Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band. Qualitative Theory of Dynamical Systems, v. 7, n. 2, p. 317-338, 2009Tradução . . Disponível em: https://doi.org/10.1007/s12346-008-0018-x. Acesso em: 19 fev. 2026.
    • APA

      Pessoa, C., & Sotomayor, J. (2009). Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band. Qualitative Theory of Dynamical Systems, 7( 2), 317-338. doi:10.1007/s12346-008-0018-x
    • NLM

      Pessoa C, Sotomayor J. Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band [Internet]. Qualitative Theory of Dynamical Systems. 2009 ; 7( 2): 317-338.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s12346-008-0018-x
    • Vancouver

      Pessoa C, Sotomayor J. Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band [Internet]. Qualitative Theory of Dynamical Systems. 2009 ; 7( 2): 317-338.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s12346-008-0018-x
  • Source: Bulletin des Sciences Mathematiques. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo Alves e SOTOMAYOR, Jorge. Tori embedded in R-3 with dense principal lines. Bulletin des Sciences Mathematiques, v. 133, n. 4, p. 348-354, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2008.11.001. Acesso em: 19 fev. 2026.
    • APA

      Garcia, R. A., & Sotomayor, J. (2009). Tori embedded in R-3 with dense principal lines. Bulletin des Sciences Mathematiques, 133( 4), 348-354. doi:10.1016/j.bulsci.2008.11.001
    • NLM

      Garcia RA, Sotomayor J. Tori embedded in R-3 with dense principal lines [Internet]. Bulletin des Sciences Mathematiques. 2009 ; 133( 4): 348-354.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.bulsci.2008.11.001
    • Vancouver

      Garcia RA, Sotomayor J. Tori embedded in R-3 with dense principal lines [Internet]. Bulletin des Sciences Mathematiques. 2009 ; 133( 4): 348-354.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.bulsci.2008.11.001
  • Source: Nonlinear Analysis - Real World Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e MELLO, Luiz Fernando e BRAGA, Denis de Carvalho. Stability and Hopf bifurcation in an hexagonal governor system. Nonlinear Analysis - Real World Applications, v. 9, n. 3, p. 889-898, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2007.01.007. Acesso em: 19 fev. 2026.
    • APA

      Sotomayor, J., Mello, L. F., & Braga, D. de C. (2008). Stability and Hopf bifurcation in an hexagonal governor system. Nonlinear Analysis - Real World Applications, 9( 3), 889-898. doi:10.1016/j.nonrwa.2007.01.007
    • NLM

      Sotomayor J, Mello LF, Braga D de C. Stability and Hopf bifurcation in an hexagonal governor system [Internet]. Nonlinear Analysis - Real World Applications. 2008 ; 9( 3): 889-898.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.01.007
    • Vancouver

      Sotomayor J, Mello LF, Braga D de C. Stability and Hopf bifurcation in an hexagonal governor system [Internet]. Nonlinear Analysis - Real World Applications. 2008 ; 9( 3): 889-898.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2007.01.007

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026