Building self-play curricula online by playing with expert agents in adversarial games (2019)
- Authors:
- USP affiliated authors: COSTA, ANNA HELENA REALI - EP ; SILVA, FELIPE LENO DA - EP
- Unidade: EP
- DOI: 10.1109/BRACIS.2019.00090
- Subjects: APRENDIZADO COMPUTACIONAL; ALGORITMOS; AGENTES INTELIGENTES; JOGOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2019
- Source:
- Título: Proceedings
- Conference titles: Brazilian Conference on Intelligent Systems (BRACIS)
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVA, Felipe Leno da e REALI COSTA, Anna Helena e STONE, Peter. Building self-play curricula online by playing with expert agents in adversarial games. 2019, Anais.. Piscataway: Escola Politécnica, Universidade de São Paulo, 2019. Disponível em: https://doi.org/10.1109/BRACIS.2019.00090. Acesso em: 13 fev. 2026. -
APA
Silva, F. L. da, Reali Costa, A. H., & Stone, P. (2019). Building self-play curricula online by playing with expert agents in adversarial games. In Proceedings. Piscataway: Escola Politécnica, Universidade de São Paulo. doi:10.1109/BRACIS.2019.00090 -
NLM
Silva FL da, Reali Costa AH, Stone P. Building self-play curricula online by playing with expert agents in adversarial games [Internet]. Proceedings. 2019 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/BRACIS.2019.00090 -
Vancouver
Silva FL da, Reali Costa AH, Stone P. Building self-play curricula online by playing with expert agents in adversarial games [Internet]. Proceedings. 2019 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/BRACIS.2019.00090 - Autonomously reusing knowledge in multiagent reinforcement learning
- Accelerating multiagent reinforcement learning through transfer learning
- Methods and algorithms for knowledge reuse in multiagent reinforcement learning
- Pairwise registration in indoor environments using adaptive combination of 2D and 3D cues
- A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems
- Object-oriented reinforcement learning in cooperative multiagent domains
- Towards knowledge transfer in deep reinforcement learning
- An advising framework for multiagent reinforcement learning systems
- GeNICE: a Novel Framework for Gene Network Inference by Clustering, Exhaustive Search, and Multivariate Analysis
- MOO-MDP: an Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning
Informações sobre o DOI: 10.1109/BRACIS.2019.00090 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3287174.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
