Comparing PCA-based fault detection methods for dynamic processes with correlated and non-Gaussian variables (2022)
- Authors:
- USP affiliated authors: SOUZA, GILBERTO FRANCISCO MARTHA DE - EP ; MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP
- Unidade: EP
- DOI: 10.1016/j.eswa.2022.117989
- Subjects: MANUTENÇÃO PREDITIVA; FALHA; ANÁLISE MULTIVARIADA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Expert systems with applications
- ISSN: 0957-4174
- Volume/Número/Paginação/Ano: v. 207, p. 1-19, Nov. 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MICHALSKI, Miguel Angelo De Carvalho e SOUZA, Gilberto Francisco Martha de. Comparing PCA-based fault detection methods for dynamic processes with correlated and non-Gaussian variables. Expert systems with applications, v. No 2022, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2022.117989. Acesso em: 28 jan. 2026. -
APA
Michalski, M. A. D. C., & Souza, G. F. M. de. (2022). Comparing PCA-based fault detection methods for dynamic processes with correlated and non-Gaussian variables. Expert systems with applications, No 2022, 1-19. doi:10.1016/j.eswa.2022.117989 -
NLM
Michalski MADC, Souza GFM de. Comparing PCA-based fault detection methods for dynamic processes with correlated and non-Gaussian variables [Internet]. Expert systems with applications. 2022 ; No 2022 1-19.[citado 2026 jan. 28 ] Available from: https://doi.org/10.1016/j.eswa.2022.117989 -
Vancouver
Michalski MADC, Souza GFM de. Comparing PCA-based fault detection methods for dynamic processes with correlated and non-Gaussian variables [Internet]. Expert systems with applications. 2022 ; No 2022 1-19.[citado 2026 jan. 28 ] Available from: https://doi.org/10.1016/j.eswa.2022.117989 - Applying Kalman filtering to unbalance estimation in rotating machinery
- Comparing principal component analysis and Mahalanobis-Taguchi system to detect unbalance in a centrifugal compressor in a floating production storage and offloading
- Digital twins in asset prognosis and health management: definitions, applications, state of the art, and future trends
- Rotating machinery fault identification using model-based and data-based techniques integration.
- Maintenance management optimization to improve system availability based on stochastic block diagram
- Applying cluster analysis to support failure management policy selection in asset management: a hydropower plant case study
- Applying an unsupervised machine learning method for defining maintenance significant items
- Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Data driven fault detection in hydroelectric power plants based on deep neural networks
Informações sobre o DOI: 10.1016/j.eswa.2022.117989 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3276433.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
