Real-time intrusion detection with sequence-aware neural networks for Internet of medical things (2024)
- Authors:
- USP affiliated authors: BATISTA, DANIEL MACEDO - IME ; HIRATA JUNIOR, ROBERTO - IME ; QUEIROZ, MARCELO GOMES DE - IME ; WERNECK, HEITOR LOURENÇO - IME
- Unidade: IME
- DOI: 10.1109/VCC63113.2024.10914399
- Subjects: APRENDIZADO COMPUTACIONAL; INTERNET DAS COISAS; SAÚDE; REDES NEURAIS; GESTÃO DA SEGURANÇA EM SISTEMAS COMPUTACIONAIS
- Keywords: Healthcare; Intrusion Detection System; Internet of Medical Things; Machine Learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: Proceedings
- Conference titles: Virtual Conference on Communications - VCC
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
WERNECK, Heitor et al. Real-time intrusion detection with sequence-aware neural networks for Internet of medical things. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/VCC63113.2024.10914399. Acesso em: 17 fev. 2026. -
APA
Werneck, H., Batista, D. M., Hirata Júnior, R., & Queiroz, M. G. de. (2024). Real-time intrusion detection with sequence-aware neural networks for Internet of medical things. In Proceedings. Piscataway: IEEE. doi:10.1109/VCC63113.2024.10914399 -
NLM
Werneck H, Batista DM, Hirata Júnior R, Queiroz MG de. Real-time intrusion detection with sequence-aware neural networks for Internet of medical things [Internet]. Proceedings. 2024 ;[citado 2026 fev. 17 ] Available from: https://doi.org/10.1109/VCC63113.2024.10914399 -
Vancouver
Werneck H, Batista DM, Hirata Júnior R, Queiroz MG de. Real-time intrusion detection with sequence-aware neural networks for Internet of medical things [Internet]. Proceedings. 2024 ;[citado 2026 fev. 17 ] Available from: https://doi.org/10.1109/VCC63113.2024.10914399 - A crash response system using LoRa-based V2X communications
- An improved tool for detection of XSS attacks by combining CNN with LSTM
- A lean and modular two-stage network intrusion detection system for iot traffic
- A hybrid CNN-LSTM model for IIoT edge privacy-aware intrusion detection
- An efficient multi-stage pipeline for IIoT threat detection
- Beyond the black box: explainability for multi-activity multi-environment wiFi sensing
- AnubisFlow: a feature extractor for distributed denial of service attack classification
- IoT DDoS detection based on stream learning
- A network intrusion detection system using deep learning against MQTT attacks in IoT
- Predicting response time in SDN-Fog environments for IIoT applications
Informações sobre o DOI: 10.1109/VCC63113.2024.10914399 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3247096.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
