Health effects of fruit juices and beverages with varying degrees of processing (2024)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.26599/FSHW.2022.9250202
- Subjects: SUCOS DE FRUTAS; DIETÉTICA; CONSUMO DE ALIMENTOS; PROCESSAMENTO DE ALIMENTOS
- Keywords: Degree of processing; Health effects; Dietary guidelines; Fruit juices and beverages; Mechanism
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Food Science and Human Wellness
- ISSN: 2097-0765
- Volume/Número/Paginação/Ano: v. 13, n. 5, p. 2456-2479, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ZHANG, Xinyue et al. Health effects of fruit juices and beverages with varying degrees of processing. Food Science and Human Wellness, v. 13, n. 5, p. 2456-2479, 2024Tradução . . Disponível em: https://doi.org/10.26599/FSHW.2022.9250202. Acesso em: 20 jan. 2026. -
APA
Zhang, X., Liao, X., Wang, Y., Rao, L., & Zhao, L. (2024). Health effects of fruit juices and beverages with varying degrees of processing. Food Science and Human Wellness, 13( 5), 2456-2479. doi:10.26599/FSHW.2022.9250202 -
NLM
Zhang X, Liao X, Wang Y, Rao L, Zhao L. Health effects of fruit juices and beverages with varying degrees of processing [Internet]. Food Science and Human Wellness. 2024 ; 13( 5): 2456-2479.[citado 2026 jan. 20 ] Available from: https://doi.org/10.26599/FSHW.2022.9250202 -
Vancouver
Zhang X, Liao X, Wang Y, Rao L, Zhao L. Health effects of fruit juices and beverages with varying degrees of processing [Internet]. Food Science and Human Wellness. 2024 ; 13( 5): 2456-2479.[citado 2026 jan. 20 ] Available from: https://doi.org/10.26599/FSHW.2022.9250202 - Traffic congestion on clustered random complex networks
- Pixel clustering by using complex network community detection technique
- Preventing error propagation in semi-supervised learning
- Handwritten digits recognition using a high level network-based approach
- Features of edge-centric collective dynamics in machine learning tasks
- Stochastic competitive learning in complex networks
- QK-means: a clustering technique based on community detection and 'capa'-means for deployment of custer head nodes
- Attack vulnerability of scale-free networks due to cascading breakdown
- Particle competition and cooperation in networks for semi-supervised learning
- Controlled consensus time for community detection in complex networks
Informações sobre o DOI: 10.26599/FSHW.2022.9250202 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003222080.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
