Segmenting brazilian legislative text using weak supervision and active learning (2024)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; PRESSATO, DIANY - ICMC ; SIQUEIRA, FELIPE ALVES - ICMC ; PEREIRA, FABIOLA SOUZA FERNANDES - ICMC ; SILVA, NADIA FELIX FELIPE DA - ICMC ; SOUZA, ELLEN POLLIANA RAMOS - ICMC ; DIAS, MÁRCIO DE SOUZA - ICMC
- Unidade: ICMC
- DOI: 10.1007/s10506-024-09419-5
- Subjects: PROCESSAMENTO DE LINGUAGEM NATURAL; TRATAMENTO AUTOMÁTICO DE TEXTOS E DISCURSOS; APRENDIZADO COMPUTACIONAL; PORTUGUÊS DO BRASIL
- Keywords: Text segmentation; Legislative domain; Weak supervision; Active Learning; Portuguese data
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Artificial Intelligence and Law
- ISSN: 0924-8463
- Volume/Número/Paginação/Ano: In press
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SIQUEIRA, Felipe Alves et al. Segmenting brazilian legislative text using weak supervision and active learning. Artificial Intelligence and Law, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10506-024-09419-5. Acesso em: 09 fev. 2026. -
APA
Siqueira, F. A., Pressato, D., Pereira, F. S. F., Silva, N. F. F. da, Souza, E. P. R., Dias, M. de S., & Carvalho, A. C. P. de L. F. de. (2024). Segmenting brazilian legislative text using weak supervision and active learning. Artificial Intelligence and Law. doi:10.1007/s10506-024-09419-5 -
NLM
Siqueira FA, Pressato D, Pereira FSF, Silva NFF da, Souza EPR, Dias M de S, Carvalho ACP de LF de. Segmenting brazilian legislative text using weak supervision and active learning [Internet]. Artificial Intelligence and Law. 2024 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10506-024-09419-5 -
Vancouver
Siqueira FA, Pressato D, Pereira FSF, Silva NFF da, Souza EPR, Dias M de S, Carvalho ACP de LF de. Segmenting brazilian legislative text using weak supervision and active learning [Internet]. Artificial Intelligence and Law. 2024 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10506-024-09419-5 - Natural language processing application in legislative activity: a case study of similar amendments in the brazilian senate
- Ulysses Tesemõ: a new large corpus for Brazilian legal and governmental domain
- On the assessment of deep learning models for named entity recognition of brazilian legal documents
- Building a relevance feedback corpus for legal information retrieval in the real-case scenario of the Brazilian Chamber of Deputies
- Not only what, but also when: understanding brazilian political comments on legislative bills over time through stance detection and topic modeling
- Ulysses-RFSQ: a novel method to improve legal information retrieval based on relevance feedback
- PLN no Direito: REN
- Named entity recognition: a survey for the portuguese language
- Assessing the impact of stemming algorithms applied to brazilian legislative documents retrieval
- Expanding UlyssesNER-Br named entity recognition corpus with informal user-generated text
Informações sobre o DOI: 10.1007/s10506-024-09419-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
