Lam’s conjecture (2000)
- Authors:
- Autor USP: MIRAGLIA NETO, FRANCISCO - IME
- Unidade: IME
- Assunto: FORMAS QUADRÁTICAS
- Language: Inglês
- Imprenta:
- Publisher: Université Paris 7
- Publisher place: Paris
- Date published: 2000
- Source:
- Título: Proceedings
- Conference titles: Séminaire de structures algébriques ordonnées : 1998-1999
-
ABNT
DICKMANN, Max e MIRAGLIA NETO, Francisco. Lam’s conjecture. 2000, Anais.. Paris: Université Paris 7, 2000. Disponível em: https://repositorio.usp.br/directbitstream/2cf03cef-99b9-4a56-b9d8-cca424b790f8/3199507.pdf. Acesso em: 15 nov. 2024. -
APA
Dickmann, M., & Miraglia Neto, F. (2000). Lam’s conjecture. In Proceedings. Paris: Université Paris 7. Recuperado de https://repositorio.usp.br/directbitstream/2cf03cef-99b9-4a56-b9d8-cca424b790f8/3199507.pdf -
NLM
Dickmann M, Miraglia Neto F. Lam’s conjecture [Internet]. Proceedings. 2000 ;[citado 2024 nov. 15 ] Available from: https://repositorio.usp.br/directbitstream/2cf03cef-99b9-4a56-b9d8-cca424b790f8/3199507.pdf -
Vancouver
Dickmann M, Miraglia Neto F. Lam’s conjecture [Internet]. Proceedings. 2000 ;[citado 2024 nov. 15 ] Available from: https://repositorio.usp.br/directbitstream/2cf03cef-99b9-4a56-b9d8-cca424b790f8/3199507.pdf - Lam's conjecture
- Bounds for the representation of quadratic forms
- Special groups and quadratic forms over rings with non zero-divisor coefficients
- On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions
- Special groups: boolean-theoretic methods in the theory of quadratic forms
- Lattice-ordered reduced special groups
- Non-commutative topology and quantales
- Elementary properties of the Boolean hull and reduced quotient functors
- Quadratic form theory over preordered von Neumann-regular rings
- Definitions: the primitive concept of logics or the Leśniewski–Tarski legacy
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3199507.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas