Special groups and quadratic forms over rings with non zero-divisor coefficients (2019)
- Autor:
- Autor USP: MIRAGLIA NETO, FRANCISCO - IME
- Unidade: IME
- Assunto: FORMAS QUADRÁTICAS
- Language: Inglês
- Imprenta:
- Publisher: Impa
- Publisher place: Rio de Janeiro
- Date published: 2019
- Conference titles: Joint Meeting Brazil-France in Mathematics
-
ABNT
MIRAGLIA NETO, Francisco. Special groups and quadratic forms over rings with non zero-divisor coefficients. 2019, Anais.. Rio de Janeiro: Impa, 2019. Disponível em: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf. Acesso em: 28 dez. 2025. -
APA
Miraglia Neto, F. (2019). Special groups and quadratic forms over rings with non zero-divisor coefficients. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf -
NLM
Miraglia Neto F. Special groups and quadratic forms over rings with non zero-divisor coefficients [Internet]. 2019 ;[citado 2025 dez. 28 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf -
Vancouver
Miraglia Neto F. Special groups and quadratic forms over rings with non zero-divisor coefficients [Internet]. 2019 ;[citado 2025 dez. 28 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf - Lam's conjecture
- Bounds for the representation of quadratic forms
- On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions
- Real semigroups and rings
- Special groups: boolean-theoretic methods in the theory of quadratic forms
- Lattice-ordered reduced special groups
- Non-commutative topology and quantales
- Elementary properties of the Boolean hull and reduced quotient functors
- Quadratic form theory over preordered von Neumann-regular rings
- Definitions: the primitive concept of logics or the Leśniewski–Tarski legacy
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3004475.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
