A methodology to predict the effective thermal conductivity of a granular assembly using deep learning (2022)
- Authors:
- USP affiliated authors: CAMPELLO, EDUARDO DE MORAIS BARRETO - EP ; RUIZ, OSVALDO DARIO QUINTANA - EP
- Unidade: EP
- Subjects: REDES NEURAIS; INTELIGÊNCIA ARTIFICIAL; MATERIAIS GRANULARES
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: ABMEC
- Publisher place: Rio de Janeiro
- Date published: 2022
- Source:
- Título: Proceedings
- Conference titles: Ibero-Latin-American Congress on Computational Methods in Engineering - CILAMCE
-
ABNT
QUINTANA RUIZ, Osvaldo Dario e CAMPELLO, Eduardo de Morais Barreto. A methodology to predict the effective thermal conductivity of a granular assembly using deep learning. 2022, Anais.. Rio de Janeiro: ABMEC, 2022. Disponível em: https://repositorio.usp.br/directbitstream/525e5a7e-f7ce-4e15-a41d-c3f6c2b29fd7/A_methodology_to_predict_the_effective_thermal_conductivity_of_a_granular_assembly_using_deep_learning.pdf. Acesso em: 10 fev. 2026. -
APA
Quintana Ruiz, O. D., & Campello, E. de M. B. (2022). A methodology to predict the effective thermal conductivity of a granular assembly using deep learning. In Proceedings. Rio de Janeiro: ABMEC. Recuperado de https://repositorio.usp.br/directbitstream/525e5a7e-f7ce-4e15-a41d-c3f6c2b29fd7/A_methodology_to_predict_the_effective_thermal_conductivity_of_a_granular_assembly_using_deep_learning.pdf -
NLM
Quintana Ruiz OD, Campello E de MB. A methodology to predict the effective thermal conductivity of a granular assembly using deep learning [Internet]. Proceedings. 2022 ;[citado 2026 fev. 10 ] Available from: https://repositorio.usp.br/directbitstream/525e5a7e-f7ce-4e15-a41d-c3f6c2b29fd7/A_methodology_to_predict_the_effective_thermal_conductivity_of_a_granular_assembly_using_deep_learning.pdf -
Vancouver
Quintana Ruiz OD, Campello E de MB. A methodology to predict the effective thermal conductivity of a granular assembly using deep learning [Internet]. Proceedings. 2022 ;[citado 2026 fev. 10 ] Available from: https://repositorio.usp.br/directbitstream/525e5a7e-f7ce-4e15-a41d-c3f6c2b29fd7/A_methodology_to_predict_the_effective_thermal_conductivity_of_a_granular_assembly_using_deep_learning.pdf - A thermo-mechanical DEM framework for the simulation of selective laser sintering
- Discrete element modeling of selective laser sintering additive manufacturing processes
- DEM modeling of advanced manufacturing technologies: from SLS to 3D concrete printing
- A coupled thermo-mechanical model for the simulation of discrete particle systems in advanced manufacturing
- On a simple, stable and efficient bond model for inter-particle adhesion
- A coupled thermo-mechanical model for the simulation of discrete particle systems in advanced manufacturing
- Análise não-linear de perfis metálicos conformados a frio
- Modelos não-lineares de casca em elasticidade e elastroplasticidade com grandes deformações: teoria e implementação em elementos finitos
- Um modelo computacional para o estudo de materiais granulares
- Effect of particle spin on the spatio-thermal distribution of incandescent materials released from explosions
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| A_methodology_to_predict_... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
