Asymptotic behaviour of solutions for a strongly damped wave equation (2023)
- Autor:
- Autor USP: EBERT, MARCELO REMPEL - FFCLRP
- Unidade: FFCLRP
- Subjects: EQUAÇÕES DA ONDA; PROBLEMA DE CAUCHY
- Language: Inglês
- Imprenta:
- Publisher place: Florianópolis
- Date published: 2023
- Source:
- Título: Resumo
- Conference titles: Symposium on Evolution Equations
-
ABNT
EBERT, Marcelo Rempel. Asymptotic behaviour of solutions for a strongly damped wave equation. 2023, Anais.. Florianópolis: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2023. Disponível em: https://mbortolan.wixsite.com/see2023. Acesso em: 03 dez. 2025. -
APA
Ebert, M. R. (2023). Asymptotic behaviour of solutions for a strongly damped wave equation. In Resumo. Florianópolis: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Recuperado de https://mbortolan.wixsite.com/see2023 -
NLM
Ebert MR. Asymptotic behaviour of solutions for a strongly damped wave equation [Internet]. Resumo. 2023 ;[citado 2025 dez. 03 ] Available from: https://mbortolan.wixsite.com/see2023 -
Vancouver
Ebert MR. Asymptotic behaviour of solutions for a strongly damped wave equation [Internet]. Resumo. 2023 ;[citado 2025 dez. 03 ] Available from: https://mbortolan.wixsite.com/see2023 - A remark on the energy estimates for wave equations with integrable in time speed of propagation
- Estimativas do tipo Lp - Lq para equações de evolução
- Energy estimates at infinity for hiperbolic-like dissipation equations
- The influence of oscillations on global existence for a class of semi-linear wave equations
- Global existence for a class of semi-linear dissipative wave equations
- Hyperbolic-like estimates for higher order equations
- A class of dissipative wave equations with time-dependent speed and damping
- Critical regularity of nonlinearities in semilinear classical damped wave equations
- The critical exponent for semilinear σ-evolution equations with a strong non-effective damping
- A classification for wave models with time-dependent potential and speed of propagation
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003193622.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
