Positive definiteness on products via generalized Stieltjes and other functions (2021)
- Autor:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.7153/mia-2021-24-33
- Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; ANÁLISE HARMÔNICA EM GRUPOS DE LIE
- Keywords: Positive definite functions; generalized Stieltjes functions; conditionally negative definite functions; Gneiting’s class; complete Bernstein functions
- Language: Inglês
- Imprenta:
- Source:
- Título: Mathematical Inequalities and Applications
- ISSN: 1331-4343
- Volume/Número/Paginação/Ano: v. 24, n. 2, p. 477-490, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MENEGATTO, Valdir Antônio. Positive definiteness on products via generalized Stieltjes and other functions. Mathematical Inequalities and Applications, v. 24, n. 2, p. 477-490, 2021Tradução . . Disponível em: https://doi.org/10.7153/mia-2021-24-33. Acesso em: 25 jan. 2026. -
APA
Menegatto, V. A. (2021). Positive definiteness on products via generalized Stieltjes and other functions. Mathematical Inequalities and Applications, 24( 2), 477-490. doi:10.7153/mia-2021-24-33 -
NLM
Menegatto VA. Positive definiteness on products via generalized Stieltjes and other functions [Internet]. Mathematical Inequalities and Applications. 2021 ; 24( 2): 477-490.[citado 2026 jan. 25 ] Available from: https://doi.org/10.7153/mia-2021-24-33 -
Vancouver
Menegatto VA. Positive definiteness on products via generalized Stieltjes and other functions [Internet]. Mathematical Inequalities and Applications. 2021 ; 24( 2): 477-490.[citado 2026 jan. 25 ] Available from: https://doi.org/10.7153/mia-2021-24-33 - Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Approximation on the sphere by weighted Fourier expansions
- Strictly positive definite kernels on the circle
Informações sobre o DOI: 10.7153/mia-2021-24-33 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3189080.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
