Accent classification is challenging but pre-training helps: a case study with novel brazilian portuguese datasets (2024)
- Authors:
- USP affiliated authors: PONTI, MOACIR ANTONELLI - ICMC ; MATOS, ARIADNE NASCIMENTO - ICMC ; ARAÚJO, GUSTAVO EVANGELISTA - ICMC
- Unidade: ICMC
- Subjects: SÍNTESE DE FALA; PROCESSAMENTO DE LINGUAGEM NATURAL; APRENDIZADO COMPUTACIONAL; PROSÓDIA; PORTUGUÊS DO BRASIL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: ACL
- Publisher place: Stroudsburg
- Date published: 2024
- Source:
- Título: Proceedings
- Conference titles: International Conference on Computational Processing of Portuguese - PROPOR
-
ABNT
MATOS, Ariadne Nascimento et al. Accent classification is challenging but pre-training helps: a case study with novel brazilian portuguese datasets. 2024, Anais.. Stroudsburg: ACL, 2024. Disponível em: https://aclanthology.org/2024.propor-1.37. Acesso em: 14 fev. 2026. -
APA
Matos, A. N., Araújo, G. E., Candido Junior, A., & Ponti, M. A. (2024). Accent classification is challenging but pre-training helps: a case study with novel brazilian portuguese datasets. In Proceedings. Stroudsburg: ACL. Recuperado de https://aclanthology.org/2024.propor-1.37 -
NLM
Matos AN, Araújo GE, Candido Junior A, Ponti MA. Accent classification is challenging but pre-training helps: a case study with novel brazilian portuguese datasets [Internet]. Proceedings. 2024 ;[citado 2026 fev. 14 ] Available from: https://aclanthology.org/2024.propor-1.37 -
Vancouver
Matos AN, Araújo GE, Candido Junior A, Ponti MA. Accent classification is challenging but pre-training helps: a case study with novel brazilian portuguese datasets [Internet]. Proceedings. 2024 ;[citado 2026 fev. 14 ] Available from: https://aclanthology.org/2024.propor-1.37 - Classificação de Variações Linguísticas do Português do Brasil por meio da Fala
- Acoustic analysis of prosodic features in natural versus synthesized speech samples from YourTTS and SYNTACC models
- Mobile inertial sensors for fall risk screening and prediction
- A decision cognizant Kullback-Leibler divergence
- Deep manifold alignment for mid-grain sketch based image retrieval
- Como funciona o deep learning
- Sketching out the details: sketch-based image retrieval using convolutional neural networks with multi-stage regression
- Generalization of feature embeddings transferred from different video anomaly detection domains
- An incremental linear-time learning algorithm for the optimum-path forest classifier
- Relevance image sampling from collection using importance selection on randomized optimum-path trees
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3186823.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
