Recovering network topology and dynamics from sequences: a machine learning approach (2024)
- Authors:
- USP affiliated authors: AMANCIO, DIEGO RAPHAEL - ICMC ; GUERREIRO, LUCAS - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.physa.2024.129618
- Subjects: APRENDIZADO COMPUTACIONAL; REDES COMPLEXAS; HEURÍSTICA
- Keywords: Random walks; Supervised classifiers; Link prediction
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Physica A : statistical mechanics and its applications
- ISSN: 0378-4371
- Volume/Número/Paginação/Ano: v. 638, p. 1-13, Mar. 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUERREIRO, Lucas e SILVA, Filipi Nascimento e AMANCIO, Diego Raphael. Recovering network topology and dynamics from sequences: a machine learning approach. Physica A : statistical mechanics and its applications, v. 638, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.physa.2024.129618. Acesso em: 20 fev. 2026. -
APA
Guerreiro, L., Silva, F. N., & Amancio, D. R. (2024). Recovering network topology and dynamics from sequences: a machine learning approach. Physica A : statistical mechanics and its applications, 638, 1-13. doi:10.1016/j.physa.2024.129618 -
NLM
Guerreiro L, Silva FN, Amancio DR. Recovering network topology and dynamics from sequences: a machine learning approach [Internet]. Physica A : statistical mechanics and its applications. 2024 ; 638 1-13.[citado 2026 fev. 20 ] Available from: https://doi.org/10.1016/j.physa.2024.129618 -
Vancouver
Guerreiro L, Silva FN, Amancio DR. Recovering network topology and dynamics from sequences: a machine learning approach [Internet]. Physica A : statistical mechanics and its applications. 2024 ; 638 1-13.[citado 2026 fev. 20 ] Available from: https://doi.org/10.1016/j.physa.2024.129618 - Identifying the perceived local properties of networks reconstructed from biased random walks
- A comparative analysis of knowledge acquisition performance in complex networks
- Knowledge acquisition and reconstruction in complex networks
- A complex network approach to stylometry
- Word sense induction using word embeddings and community detection in complex networks
- Authorship recognition via fluctuation analysis of network topology and word intermittency
- Comparing the topological properties of real and artificially generated scientific manuscripts
- Extractive multi document summarization using dynamical measurements of complex networks
- A perspective on the advancement of natural language processing tasks via topological analysis of complex networks: comment on "Approaching human language with complex networks" by Cong and Liu. [Carta]
- Extractive multi-document summarization using multilayer networks
Informações sobre o DOI: 10.1016/j.physa.2024.129618 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3183171.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
