Hydrodynamic approximation for 2D optical turbulence: statistical distribution symmetry (2023)
- Authors:
- Autor USP: GRICHKOV, ALEXANDRE - IME
- Unidade: IME
- DOI: 10.3103/S106833562315006X
- Subjects: EQUAÇÃO DE SCHRODINGER; PASSEIOS ALEATÓRIOS; PERCOLAÇÃO
- Keywords: 2D Schrödinger equation; Lundgren–Monin–Novikov equations; conformal invariance; zero-vorticity lines
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Bulletin of the Lebedev Physics Institute
- ISSN: 1068-3356
- Volume/Número/Paginação/Ano: v., n. , p.S343-S354-, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GREBENEV, Vladimir et al. Hydrodynamic approximation for 2D optical turbulence: statistical distribution symmetry. Bulletin of the Lebedev Physics Institute, n. , p. S343-S354-, 2023Tradução . . Disponível em: https://doi.org/10.3103/S106833562315006X. Acesso em: 23 jan. 2026. -
APA
Grebenev, V., Grichkov, A., Medvedev, S. B., & Fedoruk, M. P. (2023). Hydrodynamic approximation for 2D optical turbulence: statistical distribution symmetry. Bulletin of the Lebedev Physics Institute, ( ), S343-S354-. doi:10.3103/S106833562315006X -
NLM
Grebenev V, Grichkov A, Medvedev SB, Fedoruk MP. Hydrodynamic approximation for 2D optical turbulence: statistical distribution symmetry [Internet]. Bulletin of the Lebedev Physics Institute. 2023 ;( ): S343-S354-.[citado 2026 jan. 23 ] Available from: https://doi.org/10.3103/S106833562315006X -
Vancouver
Grebenev V, Grichkov A, Medvedev SB, Fedoruk MP. Hydrodynamic approximation for 2D optical turbulence: statistical distribution symmetry [Internet]. Bulletin of the Lebedev Physics Institute. 2023 ;( ): S343-S354-.[citado 2026 jan. 23 ] Available from: https://doi.org/10.3103/S106833562315006X - Commutative automorphic loop loops of order p3
- Speciality of Lie-Jordan algebras
- Lie algebra methods for the applications to the statistical theory of turbulence
- On the endomorphism rings of Abelian groups and their Jacobson radical
- Normal enveloping algebras
- Algebraic Bol loops
- On simple Lie algebras over a field of characteristic 2
- Exactness of Complexes of Modules over Schur Superalgebras
- h1 ≠ h1 for Anderson t-motives
- Simple classical Lie algebras in characteristic 2 and their gradations, II
Informações sobre o DOI: 10.3103/S106833562315006X (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3162808 - Hydrodynamic ap... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
