Commutative automorphic loop loops of order p3 (2012)
- Authors:
- Autor USP: GRICHKOV, ALEXANDRE - IME
- Unidade: IME
- DOI: 10.1142/S0219498812501009
- Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Algebra and Its Applications
- ISSN: 1793-6829
- Volume/Número/Paginação/Ano: v. 11, 1250100, 2012
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BARROS, Dylene Agda Souza de e GRICHKOV, Alexandre e VOJTECHOVSKY, Petr. Commutative automorphic loop loops of order p3. Journal of Algebra and Its Applications, v. 11, 2012Tradução . . Disponível em: https://doi.org/10.1142/S0219498812501009. Acesso em: 17 fev. 2026. -
APA
Barros, D. A. S. de, Grichkov, A., & Vojtechovsky, P. (2012). Commutative automorphic loop loops of order p3. Journal of Algebra and Its Applications, 11. doi:10.1142/S0219498812501009 -
NLM
Barros DAS de, Grichkov A, Vojtechovsky P. Commutative automorphic loop loops of order p3 [Internet]. Journal of Algebra and Its Applications. 2012 ; 11[citado 2026 fev. 17 ] Available from: https://doi.org/10.1142/S0219498812501009 -
Vancouver
Barros DAS de, Grichkov A, Vojtechovsky P. Commutative automorphic loop loops of order p3 [Internet]. Journal of Algebra and Its Applications. 2012 ; 11[citado 2026 fev. 17 ] Available from: https://doi.org/10.1142/S0219498812501009 - The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence
- Description of simple modules for Schur superalgebra S(2 vertical bar2)
- On some generalizations of groups with triality
- On filtered multiplicative bases of some associative algebras
- Maximal subloops of finite simple Moufang loops
- Towards finding the conformal invariance of the multi-point vorticity statistics in 2d turbulence
- Groups with triality
- Binary Lie algebras with identities
- Speciality of Lie-Jordan algebras
- Lie algebra methods for the applications to the statistical theory of turbulence
Informações sobre o DOI: 10.1142/S0219498812501009 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
