An overview on meta-learning approaches for few-shot weakly-supervised segmentation (2023)
- Authors:
- USP affiliated authors: CESAR JUNIOR, ROBERTO MARCONDES - IME ; OLIVEIRA, HUGO NEVES DE - IME
- Unidade: IME
- DOI: 10.1016/j.cag.2023.05.009
- Subjects: APRENDIZADO COMPUTACIONAL; REDES NEURAIS
- Keywords: Meta-Learning; Few-Shot; Weak-supervision; Segmentation; Visual learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Computers & Graphics
- ISSN: 0097-8493
- Volume/Número/Paginação/Ano: v. 113, p. 77-88, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GAMA, Pedro Henrique Targino et al. An overview on meta-learning approaches for few-shot weakly-supervised segmentation. Computers & Graphics, v. 113, p. 77-88, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.cag.2023.05.009. Acesso em: 11 fev. 2026. -
APA
Gama, P. H. T., Oliveira, H. N. de, Santos, J. A. dos, & César Júnior, R. M. (2023). An overview on meta-learning approaches for few-shot weakly-supervised segmentation. Computers & Graphics, 113, 77-88. doi:10.1016/j.cag.2023.05.009 -
NLM
Gama PHT, Oliveira HN de, Santos JA dos, César Júnior RM. An overview on meta-learning approaches for few-shot weakly-supervised segmentation [Internet]. Computers & Graphics. 2023 ; 113 77-88.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.cag.2023.05.009 -
Vancouver
Gama PHT, Oliveira HN de, Santos JA dos, César Júnior RM. An overview on meta-learning approaches for few-shot weakly-supervised segmentation [Internet]. Computers & Graphics. 2023 ; 113 77-88.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.cag.2023.05.009 - Meta-learners for few-shot weakly-supervised medical image segmentation
- Domain generalization in medical image segmentation via meta-learners
- AMEBaS: automatic midline extraction and background subtraction of ratiometric fluorescence time-lapses of polarized single cells
- PCA-based 3D face photography
- A graph-based approach for object detection and action recognition in videos
- Graph-based pattern recognition and applications
- 3D face computational photography using PCA spaces
- Attributed graphs for tracking multiple objects in structured sports videos
- Interactive image segmentation by matching attributed relational graphs
- A spatio-temporal approach for multiple object detection in videos using graphs and probability maps
Informações sobre o DOI: 10.1016/j.cag.2023.05.009 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3136894.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
