Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter (2019)
- Authors:
- USP affiliated authors: GARCIA, ROBERTA VELOSO - EEL ; PARDAL, PAULA CRISTIANE PINTO MESQUITA - EEL
- Unidade: EEL
- DOI: 10.1016/j.asr.2018.10.003
- Assunto: FILTROS DE KALMAN
- Keywords: Attitude estimation; Real data; Euler angles; Cubature Kalman Filter; Extended Kalman Filter; Unscented Kalman Filter
- Agências de fomento:
- Language: Inglês
- Abstract: This article compares the attitude estimated by nonlinear estimator Cubature Kalman Filter with results obtained by the Extended Kalman Filter and Unscented Kalman Filter. Currently these estimators are the subject of great interest in attitude estimation problems, however, mostly the Extended Kalman Filter has been applied to real problems of this nature. In order to evaluate the behavior of the Extended Kalman Filter, Unscented Kalman Filter and Cubature Kalman Filter algorithms when submitted to realistic situations, this paper uses real data of sensors on-board the CBERS-2 remote sensing satellite (China Brazil Earth Resources Satellite). It is observed that, for the case studied in this article, the filters are very competitive and present advantages and disadvantages that should be dealt with according to the requirements of the problem.
- Imprenta:
- Source:
- Título: Advances in space research
- ISSN: 02731177
- Volume/Número/Paginação/Ano: v.63, n.2, p.1038-1050, 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
GARCIA, Roberta Veloso et al. Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter. Advances in space research, v. 63, n. 2, p. 1038-1050, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.asr.2018.10.003. Acesso em: 06 nov. 2024. -
APA
Garcia, R. V., Pardal, P. C. P. M., Kuga, H. K., & Zanardi, M. C. (2019). Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter. Advances in space research, 63( 2), 1038-1050. doi:10.1016/j.asr.2018.10.003 -
NLM
Garcia RV, Pardal PCPM, Kuga HK, Zanardi MC. Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter [Internet]. Advances in space research. 2019 ;63( 2): 1038-1050.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/j.asr.2018.10.003 -
Vancouver
Garcia RV, Pardal PCPM, Kuga HK, Zanardi MC. Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter [Internet]. Advances in space research. 2019 ;63( 2): 1038-1050.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/j.asr.2018.10.003 - Rao-Blackwellized Particle Filter for the CBERS-4 attitude and gyros bias estimation
- Filtro de partículas rao-blackwellized para estimação de atitude de satélites artificiais usando dados simulados
- Sequential nonlinear estimation: regularized particle filter applied to the attitude estimation problem with real data
- Attitude Estimation Using Extended H Infinity Particle Filter Applied to China-Brazil Earth Resource Satellite-4
- A eficiência computacional dos filtros de Kalman não-lineares sob a perspectiva da estimação da atitude
- Interval study of convergence in the solution of 1D Burgers by least squares finite element method (LSFEM) + Newton linearization
- The particle filter sample impoverishment problem in the orbit determination application
- Stability evaluation of sequential estimators applied to orbit determination: Sigma-point and extended kalman filters
- Unscented kalman filter for determination of spacecraft attitude using different attitude parameterizations and real data
- An investigation on cubature Kalman filter performance for orbit determination application
Informações sobre o DOI: 10.1016/j.asr.2018.10.003 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas