Analysis of vertebrae without fracture on spine MRI to assess bone fragility: a comparison of traditional machine learning and deep learning (2022)
- Authors:
- USP affiliated authors: TRAINA JUNIOR, CAETANO - ICMC ; BARBOSA, MARCELLO HENRIQUE NOGUEIRA - FMRP ; TRAINA, AGMA JUCI MACHADO - ICMC ; RAMOS, JONATHAN DA SILVA - ICMC ; AGUIAR, ERIKSON JÚLIO DE - ICMC ; BELIZARIO, IVAR VARGAS - ICMC ; COSTA, MÁRCUS VINÍCIUS LOBO - ICMC ; MACIEL, JAMILLY GOMES - FMRP ; CAZZOLATO, MIRELA TEIXEIRA - ICMC
- Unidades: ICMC; FMRP
- DOI: 10.1109/CBMS55023.2022.00021
- Subjects: APRENDIZADO COMPUTACIONAL; TECNOLOGIAS DA SAÚDE; RESSONÂNCIA MAGNÉTICA; DIAGNÓSTICO POR IMAGEM; OSTEOGÊNESE IMPERFEITA; COLUNA VERTEBRAL
- Keywords: Magnetic resonance imaging; deep learning; vertebral fragility fractures; texture analysis
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Los Alamitos
- Date published: 2022
- Source:
- Título: Proceedings
- ISSN: 2372-9198
- Conference titles: International Symposium on Computer-Based Medical Systems - CBMS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RAMOS, Jonathan da Silva et al. Analysis of vertebrae without fracture on spine MRI to assess bone fragility: a comparison of traditional machine learning and deep learning. 2022, Anais.. Los Alamitos: IEEE, 2022. Disponível em: https://doi.org/10.1109/CBMS55023.2022.00021. Acesso em: 12 fev. 2026. -
APA
Ramos, J. da S., Aguiar, E. J. de, Belizario, I. V., Costa, M. V. L., Maciel, J. G., Cazzolato, M. T., et al. (2022). Analysis of vertebrae without fracture on spine MRI to assess bone fragility: a comparison of traditional machine learning and deep learning. In Proceedings. Los Alamitos: IEEE. doi:10.1109/CBMS55023.2022.00021 -
NLM
Ramos J da S, Aguiar EJ de, Belizario IV, Costa MVL, Maciel JG, Cazzolato MT, Traina Junior C, Nogueira-Barbosa MH, Traina AJM. Analysis of vertebrae without fracture on spine MRI to assess bone fragility: a comparison of traditional machine learning and deep learning [Internet]. Proceedings. 2022 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/CBMS55023.2022.00021 -
Vancouver
Ramos J da S, Aguiar EJ de, Belizario IV, Costa MVL, Maciel JG, Cazzolato MT, Traina Junior C, Nogueira-Barbosa MH, Traina AJM. Analysis of vertebrae without fracture on spine MRI to assess bone fragility: a comparison of traditional machine learning and deep learning [Internet]. Proceedings. 2022 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/CBMS55023.2022.00021 - BEAUT: a radiomic approach to identify potential lumbar fractures in magnetic resonance imaging
- Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings
- A deep learning-based radiomics approach for COVID-19 detection from CXR images using ensemble learning model
- FINE: improving time and precision of segmentation techniques for vertebral compression fractures in MRI
- 3DBGrowth: volumetric vertebrae segmentation and reconstruction in magnetic resonance imaging
- Spine MRI texture analysis and prediction of osteoporotic vertebral fracture
- DEELE-Rad: exploiting deep radiomics features in deep learning models using COVID-19 chest X-ray images
- RADAR-MIX: how to uncover adversarial attacks in medical image analysis through explainability
- Security and privacy in machine learning for health systems: strategies and challenges
- Fast and accurate 3-D spine MRI segmentation using FastCleverSeg
Informações sobre o DOI: 10.1109/CBMS55023.2022.00021 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3093849.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
