Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings (2023)
- Authors:
- USP affiliated authors: TRAINA JUNIOR, CAETANO - ICMC ; TRAINA, AGMA JUCI MACHADO - ICMC ; AGUIAR, ERIKSON JÚLIO DE - ICMC ; COSTA, MÁRCUS VINÍCIUS LOBO - ICMC
- Unidade: ICMC
- DOI: 10.1109/CBMS58004.2023.00184
- Subjects: APRENDIZADO COMPUTACIONAL; PROCESSAMENTO DE IMAGENS; RECONHECIMENTO DE IMAGEM; DIAGNÓSTICO POR COMPUTADOR
- Keywords: Deep Learning; Adversarial Attacks; Security & Privacy; Medical Images
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Los Alamitos
- Date published: 2023
- Source:
- Título: Proceedings
- ISSN: 2372-9198
- Conference titles: International Symposium on Computer-Based Medical Systems - CBMS
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
AGUIAR, Erikson Júlio de et al. Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings. 2023, Anais.. Los Alamitos: IEEE, 2023. Disponível em: https://doi.org/10.1109/CBMS58004.2023.00184. Acesso em: 29 dez. 2025. -
APA
Aguiar, E. J. de, Costa, M. V. L., Traina Junior, C., & Traina, A. J. M. (2023). Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings. In Proceedings. Los Alamitos: IEEE. doi:10.1109/CBMS58004.2023.00184 -
NLM
Aguiar EJ de, Costa MVL, Traina Junior C, Traina AJM. Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings [Internet]. Proceedings. 2023 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1109/CBMS58004.2023.00184 -
Vancouver
Aguiar EJ de, Costa MVL, Traina Junior C, Traina AJM. Assessing vulnerabilities of deep learning explainability in medical image analysis under adversarial settings [Internet]. Proceedings. 2023 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1109/CBMS58004.2023.00184 - DEELE-Rad: exploiting deep radiomics features in deep learning models using COVID-19 chest X-ray images
- Security and privacy in machine learning for health systems: strategies and challenges
- RADAR-MIX: how to uncover adversarial attacks in medical image analysis through explainability
- A deep learning-based radiomics approach for COVID-19 detection from CXR images using ensemble learning model
- SentinelAdvMedical: toward adversarial attacks detection on medical image classification via Out-Of-Distribution strategies
- MedTimeSplit: continual dataset partitioning to mimic real-world settings for federated learning on Non-IID medical image data
- Data augmentation for medical image segmentation: a comparative analysis of traditional techniques and synthetic data generation
- Exploring diversified similarity with Kundaha
- Upgraded SemIndex prototype supporting intelligent database keyword queries through disambiguation, query as you type, and parallel search algorithms
- Content-based image retrieval using approximate shape of objects
Informações sobre o DOI: 10.1109/CBMS58004.2023.00184 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3145032.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
