Time-series in hyper-parameter initialization of machine learning techniques (2021)
- Authors:
- Autor USP: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-030-91608-4_25
- Subjects: APRENDIZADO COMPUTACIONAL; COMPONENTES PRINCIPAIS; ANÁLISE DE SÉRIES TEMPORAIS
- Keywords: Automated ML; Metalearning; PCA; DTW
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 13113, p. 246-258, 2021
- Conference titles: International Conference on Intelligent Data Engineering and Automated Learning - IDEAL
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HORVÁTH, Tomás e MANTOVANI, Rafael Gomes e CARVALHO, André Carlos Ponce de Leon Ferreira de. Time-series in hyper-parameter initialization of machine learning techniques. Lecture Notes in Computer Science. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-91608-4_25. Acesso em: 12 fev. 2026. , 2021 -
APA
Horváth, T., Mantovani, R. G., & Carvalho, A. C. P. de L. F. de. (2021). Time-series in hyper-parameter initialization of machine learning techniques. Lecture Notes in Computer Science. Cham: Springer. doi:10.1007/978-3-030-91608-4_25 -
NLM
Horváth T, Mantovani RG, Carvalho ACP de LF de. Time-series in hyper-parameter initialization of machine learning techniques [Internet]. Lecture Notes in Computer Science. 2021 ; 13113 246-258.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-030-91608-4_25 -
Vancouver
Horváth T, Mantovani RG, Carvalho ACP de LF de. Time-series in hyper-parameter initialization of machine learning techniques [Internet]. Lecture Notes in Computer Science. 2021 ; 13113 246-258.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-030-91608-4_25 - Gabinete pequeno é destaque de pc itautec
- New data strucutre and spanning forest operators for evolutionay algorithms
- Metalearning for context-aware filtering: selection of tensor factorization algorithms
- Evolutionary tuning of SVM parameter values in multiclass problems
- Dimensionality reduction for the algorithm recommendation problem
- Making data stream classification tree-based ensembles lighter
- A study of biclustering coherence measures for gene expression data
- Anomaly detection through temporal abstractions on intensive care data: position paper
- CF4CF: recommending collaborative filtering algorithms using collaborative filtering
- A machine learning-based approach for prediction of plant protection product deposition
Informações sobre o DOI: 10.1007/978-3-030-91608-4_25 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3084901_postprint.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
